Skip to main content
Log in

Giant sarcoplasmic reticulum vesicles: A study of membrane morphogenesis

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Rabbit sarcoplasmic reticulum vesicles were fused into giant proteoliposomes in a medium of 0.1 M KCl, 10mm Tris-maleate, pH 7.0, 10 Μg ml−1 antipain, 10 Μg ml−1 leupeptin, 25 IU per ml Trasylol, 3mm NaN3, 3.75% PEG 1500 and 3% DMSO by brief exposure to 37‡ C, followed by incubation for 4 h at 25‡ C. Approximately 5–10% of the sarcoplasmic reticulum elements underwent fusion, forming single-walled spherical vesicles of 1–25 Μm diameter, in which the polarity of the native membrane was preserved. The Ca2+-stimulated ATPase activity remained essentially unchanged after fusion. On exposure to decavanadate in a Ca2+-free medium the spherical vesicles assumed a corrugated appearance with the formation of long ridges separated by deep furrows that eventually pinched off longitudinally and separated into numerous long crystalline tubules of uniform (approximately 0.1 Μm) diameter. The vanadate-induced transformation of giant vesicles into tubules implies that the geometry of the sarcoplasmic reticulum membrane is determined by the conformation of the Ca2+-ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashley, C. C., Mulligan, I. P. &Lea, T. J. (1991) Ca2+ and activation mechanism in skeletal muscle.Quart. Rev. Biophys. 24, 1–73.

    Google Scholar 

  • Bick, R. J., Youker, K. A., Pownall, H. J., Van Winkle, W. B. &Entman, M. L. (1991) Unsaturated aminophospholipids are preferentially retained by the fast skeletal muscle CaATPase during detergent solubilization. Evidence for a specific association between aminophospholipids and the calcium pump protein.Arch. Biochem. Biophys. 286, 346–52.

    PubMed  Google Scholar 

  • Boland, R., Martonosi, A. &Tillack, T. W. (1974) Developmental changes in the composition and function of sarcoplasmic reticulum.J. Biol. Chem. 249, 612–23.

    PubMed  Google Scholar 

  • Castellani, L. &Hardwicke, P. M. D. (1983) Crystalline structure of sarcoplasmic reticulum from scallop.J. Cell Biol. 97, 557–61.

    PubMed  Google Scholar 

  • Castellani, L., Hardwicke, P. M. D. &Vibert, P. (1985) Dimer ribbons in the three dimensional structure of sarcoplasmic reticulum.J. Mol. Biol. 185, 579–94.

    PubMed  Google Scholar 

  • Clarke, D. M., Loo, T. W. &Maclennan, D. H. (1990) The epitope for monoclonal antibody A20 (amino acids 870–890) is located on the luminal surface of the Ca2+-ATPase of sarcoplasmic reticulum.J. Biol. Chem. 265, 17405–8.

    PubMed  Google Scholar 

  • Correa, A. M. &Agnew, W. S. (1988) Fusion of native or reconstituted membranes to liposomes, optimized for single channel recording.Biophys. J. 54, 569–75.

    PubMed  Google Scholar 

  • Criado, M. &Keller, B. U. (1987) A membrane fusion strategy for single-channel recordings of membranes usually non-accessible to patch-clamp pipette electrodes.FEBS Lett. 224, 172–6.

    PubMed  Google Scholar 

  • Crowe, L. M. &Baskin, R. J. (1977) Stereological analysis of developing sarcotubular membranes.J. Ultrast. Res. 58, 10–21.

    Google Scholar 

  • Dux, L. &Martonosi, A. (1983a) Two-dimensional arrays of proteins in sarcoplasmic reticulum and purified Ca2+-ATPase vesicles treated with vanadate.J. Biol. Chem. 258, 2599–603.

    PubMed  Google Scholar 

  • Dux, L. &Martonosi, A. (1983b) Ca2+-ATPase membrane crystals in sarcoplasmic reticulum. The effect of trypsin digestion.J. Biol. Chem. 258, 10111–5.

    PubMed  Google Scholar 

  • Dux, L. &Martonosi, A. (1983c) The regulation of ATPase-ATPase interactions in sarcoplasmic reticulum membrane. I. The effects of Ca2+, ATP and inorganic phosphate.J. Biol. Chem. 258, 11896–902.

    PubMed  Google Scholar 

  • Dux, L. &Martonosi, A. (1983d) The regulation of ATPase-ATPase interactions in sarcoplasmic reticulum membrane. II. The influence of membrane potential.J. Biol. Chem. 258, 11903–7.

    PubMed  Google Scholar 

  • Dux, L., Taylor, K. A., Ting-Beall, H. P. &Martonosi, A. (1985) Crystallization of the Ca2+-ATPase of sarcoplasmic reticulum by calcium and lanthanide ions.J. Biol. Chem. 260, 11730–43.

    PubMed  Google Scholar 

  • Hirashima, N. &Kirino, Y. (1988) Potassium channels in synaptosomal membrane examined using patch-clamp techniques and reconstituted giant proteolippsomes.Biochim. Biophys. Acta 946, 209–14.

    PubMed  Google Scholar 

  • Hirashima, N., Ishibashi, H. &Kirino, Y. (1991) Comparative electrophysiological study of reconstituted giant vesicle preparations of the rabbit skeletal muscle sarcoplasmic reticulum K+ channel.Biochim. Biophys. Acta 1067, 235–40.

    PubMed  Google Scholar 

  • Keller, B. U., Hedrich, R., Vaz, W. L. C. &Criado, M. (1988) Single channel recordings of reconstituted ion channel proteins: an improved technique.Pflugers Arch. 411, 94–100.

    PubMed  Google Scholar 

  • Martonosi, A., Boland, R. &Halpin, R. A. (1972) The biosynthesis of sarcoplasmic reticulum membranes and the mechanism of calcium transport.Cold Spring Harbor Symp. Quant. Biol. 37, 455–68.

    Google Scholar 

  • Martonosi, A., Roufa, D., Ha, D.-B. &Boland, R. (1980) The biosynthesis of sarcoplasmic reticulum.Fed. Proc. 39, 2415–21.

    PubMed  Google Scholar 

  • Martonosi, A., Dux, L., Terjung, R. L. &Roufa, D. (1982) Regulation of membrane assembly during development of sarcoplasmic reticulum. The possible role of calcium.Ann. N.Y. Acad. Sci. 402, 485–514.

    PubMed  Google Scholar 

  • Martonosi, A., Taylor, K. A., Varga, S. &Ting-Beall, H. P. (1987) The molecular structure of sarcoplasmic reticulum. InThe Electron Microscopy of Proteins, Vol. 6, Membranous Structures (edited byHarris, J. R. &Horne, R. W.) pp. 255–376. London: Academic Press.

    Google Scholar 

  • Matthews, I., Sharma, R. P., Lee, A. G. &East, J. M. (1990) Transmembrane organization of (Ca2+-Mg2+)-ATPase from sarcoplasmic reticulum. Evidence for lumenal location of residues 877–888.J. Biol. Chem. 265, 18737–40.

    PubMed  Google Scholar 

  • Molnar, E., Varga, S., Jona, I. &Martonosi, A. (1991) Covalent labelling of the cytoplasmic or luminal domains of the sarcoplasmic reticulum Ca2+-ATPase with fluorescent azido dyes.Biochim. Biophys. Acta 1068, 27–40.

    PubMed  Google Scholar 

  • Nakamura, H., Jilka, R. L., Boland, R. &Martonosi, A. N. (1976) Mechanism of ATP hydrolysis by sarcoplasmic reticulum and the role of phospholipids.J. Biol. Chem. 251, 5414–23.

    PubMed  Google Scholar 

  • Peachey, L. D. &Franzini-Armstrong, C. (1983) Structure and function of membrane systems of skeletal muscle cells. InHandbook of Physiology. Section 10,Skeletal Muscle (edited byPeachey, L. D., Adrian, R. H. &Geiger, S. R.) pp. 23–71. Bethesda: American Physiological Society.

    Google Scholar 

  • Rahamimoff, R., Deriemer, S. A., Sakmann, B., Stadler, H. &Yakir, N. (1988) Ion channels in synaptic vesicles fromTorpedo electric organ.Proc. Natl Acad. Sci. USA 85, 5310–4.

    PubMed  Google Scholar 

  • Raudino, A. &Bianciardi, P. (1991) Polymer-mediated electrostatic interactions between charged lipid assemblies and electrolyte solutions: a tentative model of the polyethylene glycol-induced cell fusion.J. Theor. Biol. 149, 1–20.

    PubMed  Google Scholar 

  • Rios, E. &Pizarro, G. (1991) Voltage sensor of excitation-contraction coupling in skeletal muscle.Physiol. Rev. 71, 849–908.

    PubMed  Google Scholar 

  • Riquelme, G., Lopez, E., Garcia-Segura, L. M., Ferragut, J. A. &Gonzalez-Ros, J. M. (1990) Giant liposomes: a model system in which to obtain patch-clamp recordings of ionic channels.Biochemistry 29, 11215–22.

    PubMed  Google Scholar 

  • Rosenberg, R. L., Tomiko, S. A. &Agnew, W. S. (1984) Single-channel properties of the reconstituted voltage-regulated Na channel isolated from the electroplax ofElectrophorus electricus.Proc. Natl Acad. Sci. USA 81, 5594–8.

    PubMed  Google Scholar 

  • Saito, Y., Hirashima, N. &Kirino, Y. (1988) Giant proteoliposomes prepared by freeze-thawing without use of detergent: reconstitution of biomembranes usually inaccessible to patch-clamp pipette microelectrode.Biochem. Biophys. Res. Commun. 154, 85–90.

    PubMed  Google Scholar 

  • Schmid, A., Gogelein, H., Kemmer, T. P. &Schulz, I. (1988) Anion channels in giant liposomes made of endoplasmic reticulum vesicles from rat exocrine pancreas.J. Membr. Biol. 104, 275–82.

    PubMed  Google Scholar 

  • Stein, P. &Palade, P. (1988) Sarcoballs: direct access to sarco-plasmic reticulum Ca2+ channels in skinned frog muscle fibres.Biophys. J. 54, 357–63.

    PubMed  Google Scholar 

  • Tank, D. W., Miller, C. &Webb, W. W. (1982) Isolated-patch recording from liposomes containing functionally reconstituted chloride channels fromTorpedo electroplax.Proc. Natl Acad. Sci. USA 79, 7749–53.

    PubMed  Google Scholar 

  • Tank, D. W., Huganir, R. L., Greengard, P. &Webb, W. W. (1983) Patch-recorded single-channel currents of the purified and reconstitutedTorpedo acetylcholine receptor.Proc. Natl Acad. Sci. USA 80, 5129–33.

    PubMed  Google Scholar 

  • Taylor, K., Dux, L. &Martonosi, A. (1984) Structure of the vanadate-induced crystals of sarcoplasmic reticulum Ca2+-ATPase.J. Mol. Biol. 174, 193–204.

    PubMed  Google Scholar 

  • Taylor, K. A., Dux, L. &Martonosi, A. (1986a) Three-dimensional reconstruction of negatively-stained crystals of the Ca2+-ATPase from muscle sarcoplasmic reticulum.J. Mol Biol. 187, 417–27.

    PubMed  Google Scholar 

  • Taylor, K. A., Ho, M-H. &Martonosi, A. (1986b) Image analysis of Ca2+-ATPase from sarcoplasmic reticulum.Ann. N.Y. Acad. Sci. 483, 31–43.

    PubMed  Google Scholar 

  • Tillack, T. W., Boland, R. &Martonosi, A. N. (1974) The ultrastructure of developing sarcoplasmic reticulum.J. Biol. Chem. 249, 624–33.

    PubMed  Google Scholar 

  • Varga, S., Csermely, P. &Martonosi, A. (1985) The binding of vanadium (V) oligoanions to sarcoplasmic reticulum.Eur. J. Biochem. 148, 119–26.

    PubMed  Google Scholar 

  • Varga, S., Mullner, N., Pikula, S., Papp, S., Varga, K. &Martonosi, A. (1986) Pressure effects on sarcoplasmic reticulum.J. Biol. Chem. 261, 13943–56.

    PubMed  Google Scholar 

  • Varga, S., Csermely, P., Mullner, N., Dux, L. &Martonosi, A. (1987) Effect of chemical modification on the crystallization of Ca2+-ATPase in sarcoplasmic reticulum.Biochim. Biophys. Acta 896, 187–95.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varga, S., Martonosi, A. Giant sarcoplasmic reticulum vesicles: A study of membrane morphogenesis. J Muscle Res Cell Motil 13, 497–510 (1992). https://doi.org/10.1007/BF01737992

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01737992

Keywords

Navigation