Skip to main content
Log in

HSV-1 brain infection by the olfactory nerve route and virus latency and reactivation may cause learning and behavioral deficiencies and violence in children and adults: A point of view

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Two recent studies provided new evidence on the latency of HSV-1 DNA in 15.5% of olfactory bulbs and in 72.5% of trigeminal nerves from human corpses at forensic postmortems (1) and in 35% of 40 autopsied human brains (2). In the latter brains, latent HSV-1 DNA was found in the olfactory bulbs, amygdala, hippocampus, brain stem, and trigeminal ganglia. Although in these studies it is not known by which route HSV-1 entered the olfactory bulbs and brain, experimental studies in mice (3) revealed that injection of HSV-1 into the olfactory bulbs leads to virus migration into the brain amygdala and hippocampus via the olfactory nerve and locus coeruleus. If the olfactory ciliary nerve epithelium is the port of entry of HSV-1 into the olfactory bulbs and brain in humans as well, protection of the nose against HSV-1 infection may be needed to prevent virus latency in neurons in the amygdala and hippocampus (3). Infection of humans by HSV-1 was estimated to increase from 18.2% in the 0–20 year population group to 100% in persons older than 60 years (1), indicating that worldwide human populations at all ages are at risk of brain infection by the olfactory nerve route. In addition, both primary infection and reactivation of latent DNA in the brain may lead to damage of neurons in the brain involved in memory, learning, and behavior, as observed in infected, acyclovirtreated mice (3). The current introduction of a live apathogenic varicella-zoster virus (VZV) vaccine to immunize children against chickenpox (4) may suggest that the time is ripe for immunization of children and adults against HSV-1 infections, especially infections by the olfactory nerve route, to prevent potential brain damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liedtke W., Opalka B., Zimmerman C.W., and Lignitz E., J Neurol Sci116 6–11, 1993.

    Google Scholar 

  2. Baringer J.R. and Pisani P., Ann Neurol36 823–829, 1994.

    Google Scholar 

  3. McLean J.H., Shipley M.T., Bernstein D.I., and Corbett D., Exp Neurol122 209–222, 1993.

    Google Scholar 

  4. Goodpasture F.W. and Teague O.J., Med Res44 121–133, 1923.

    Google Scholar 

  5. Slavin H.B. and Berry G.P., J Exp Med78 315–321, 1943.

    Google Scholar 

  6. Beers D.R., Henkel J.S., Schaffer D.C., Rose J.W., and Stroop W.G., J Neuropathol Exp Neurol52 241–252, 1993.

    Google Scholar 

  7. Päivärinta M.A., Marttila R.J., Lönnberg P., and Rinne U.K., Neurosci Lett156 1–4, 1993.

    Google Scholar 

  8. Hopkins I.J., Aust Pediatr10 273–276, 1974.

    Google Scholar 

  9. Shahar E.M., Hwang P.A., Niesen C.E., and Murphy G., Pediatrics88 276–279, 1991.

    Google Scholar 

  10. Kyllerman M.G., Herner S., Bergström T.B., and Ekholm S.E., Pediatr Neurol9 227–229, 1993.

    Google Scholar 

  11. Marinesco G. and Dragonesco S., Ann Inst Pasteur37 753–783, 1932.

    Google Scholar 

  12. Talamo B.R., Rudel R.A., Kosik K.S., Lee V.M-Y., Neff S., Adelman L., and Kaner J.S., Nature337 736–739, 1989.

    Google Scholar 

  13. Gautrin D. and Gauthier S., Can J Neurol Sci16 378–387, 1989.

    Google Scholar 

  14. Pogo B.G.T., Casals J., and Elizan T.S., Brain110 907–915, 1987.

    Google Scholar 

  15. Deatly A.M., Haase A.T., Fewster P.H., Lewis E., and Ball M.J., Neuropathol Appl Neurobiol16 213–223, 1990.

    Google Scholar 

  16. Mohammed A.K., Magnusson O., Maehlen J., Fonnum F., and Norrby E., Neuroscience35 355–363, 1990.

    Google Scholar 

  17. Saudou F., Amora D.A., Dierich A., LeMeur M., Ramboz S., Segu L., Buhot M., and Hen R., Science265 1875–1878, 1994.

    Google Scholar 

  18. Becker Y. in Becker Y. and Darai G. (eds).Pathogenicity of Human Herpesviruses due to Specific Pathogenicity Genes. Frontiers of Virology. Springer-Verlag, Heidelberg, 1994, pp 370–380.

    Google Scholar 

  19. Fokkens W.J., Vroom T.M., Rijntjes E., and Mulden P.G.H., Allergy44 167–172, 1989.

    Google Scholar 

  20. Katz S.I., Tamaki K., and Sachs D.H., Nature282 324–326, 1979.

    Google Scholar 

  21. Sprecher E. and Becker Y., Arch Virol126 253–269, 1992.

    Google Scholar 

  22. Sprecher E. and Becker Y., In Vivo7 217–227, 1993.

    Google Scholar 

  23. Sprecher E. and Becker Y., Arch Virol132 1–28, 1993.

    Google Scholar 

  24. Hosoi J., Murphy G.F., Egan C.L., Lerner E.A., Grabbe S., Asahina A., and Granstein R.D., Nature363 159–163, 1993.

    Google Scholar 

  25. Amara S.G., Jonas V., Rosenfeld M.G., Ong E.S., and Evans R.M., Nature298 240–244, 1982.

    Google Scholar 

  26. Dalsgaard C.-J., Jernbeck J., Stains W., Kjartanssson J., Haëgerstrand J., Haëgerstrand A., Hökfelt T., and Brodin E., Histochemistry91 3538, 1989.

    Google Scholar 

  27. Nawa H., Hirose T., Takashima H., Inayama S., and Nakanishi S., Nature306 32–36, 1983.

    Google Scholar 

  28. Stjärne H., Lundblad L., Änggard A., Hökfelt T., and Lundberg J.M., Cell Tissue Res256 439–446, 1989.

    Google Scholar 

  29. Baker H., Brain Res54 295–298, 1990.

    Google Scholar 

  30. Buck L. and Axel R., Cell65 175–187, 1991.

    Google Scholar 

  31. Graziadei P.P.C. and Monti Graziadei G.A., J Neurocytol8 1–18, 1979.

    Google Scholar 

  32. Breer H., Shepherd G.M., TINS16 5–9, 1993.

    Google Scholar 

  33. Lowe G. and Gold G.H., Nature366 283–286, 1993.

    Google Scholar 

  34. Breer H., Klemm T., and Boekhoff I., NeuroReport3 1030–1032, 1992.

    Google Scholar 

  35. Boekhoff I. and Breer H., Proc Natl Acad Sci USA89 471–474, 1992.

    Google Scholar 

  36. Shepherd G.M., Physiol Rev53 864–916, 1972.

    Google Scholar 

  37. Shipley M.T., Halloran F., and La Torre J., Brain Res329 294–299, 1985.

    Google Scholar 

  38. McLean J.H. and Shipley M.T., J Comp Neurol304 467–477, 1991.

    Google Scholar 

  39. Shipley M.T., Brain Res Bull15 129–142, 1985.

    Google Scholar 

  40. McLean J.H., Shipley M.T., and Bernstein D.I., Brain Res Bull22 867–881, 1989.

    Google Scholar 

  41. Merkel K.H.H. and Maibach E.A., Histochem J16 467–469, 1984.

    Google Scholar 

  42. Tomlinson A.H. and Esiri M.M., J Neurol Sci60 473–484, 1983.

    Google Scholar 

  43. Barnett E.M., Cassell M.D., and Perlman S., Neurosci57 1007–1025, 1993.

    Google Scholar 

  44. Stroop W.G., Rock D.L., and Fraser N.W., Lab Invest51 27–38, 1984.

    Google Scholar 

  45. Olton D.S. in Seifert W. (ed).Neurobiology of the Hippocampus. Academic Press, London, 1983.

    Google Scholar 

  46. Friedman H.R. and Goldman-Rakic P., Neurosci8, 4693–4706.

  47. Olton D.S., Branch M., and Best P.J., Exp Neurol58, 587–609.

  48. Olton D.S., Walker J.A., and Gage F.H., Brain Res139, 295–308.

  49. Becker J.T., Walker J.A., and Olton D.S., Brain Res200, 307–320.

  50. Olton D.S. and Papas B.C., Neuropsychologia17, 669–682.

  51. Low W.C., Lewis P.R., Bunch S.T., Dunnet S.B., Thomas R., Iversen S.D., Bjorklund A., and Stenevi U., Nature300 260–262, 1982.

    Google Scholar 

  52. Morris R.J., Neuroscience14 1025–1032, 1984.

    Google Scholar 

  53. Griffin D.E., Levine B., Tyor W.R., and Irani D.N.A., Semin Immunol4 111–119, 1992.

    Google Scholar 

  54. Fokkens W.J., Vroom T.M., Rijntjes E., and Mulder P.G.H., Allergy44 167–172, 1989.

    Google Scholar 

  55. Katz S.I., Tamaki K., and Sachs D.H., Nature282 324–326, 1979.

    Google Scholar 

  56. Nash A.A. and Cambouropoulos P., Semin Virol4 181–185, 1993.

    Google Scholar 

  57. Gibbs W.W., Sci Am272 76–83, 1995.

    Google Scholar 

  58. White C.J., Kuter B.J., Hildebrand C.S., Isganitis K.L., Matthrew H., Miller W.J., Provost P.J., Ellis R.W., Gerety R.J., and Calandra G.B., Pediatrics87 604–610, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, Y. HSV-1 brain infection by the olfactory nerve route and virus latency and reactivation may cause learning and behavioral deficiencies and violence in children and adults: A point of view. Virus Genes 10, 217–226 (1995). https://doi.org/10.1007/BF01701811

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01701811

Key words

Navigation