Skip to main content
Log in

Preliminary evidence for a cholinergic-like system in lichen morphogenesis

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

Membrane acetylcholinesterase activity is considered to be a marker for a cholinergic system. When temporarily expressed in differentiating cells other than the nervous or muscular ones, it may play a role in morphogenesis. In the lichenParmelia caperata (L.) Ach., acetylcholinesterase is histochemically localized mainly in the cell walls and/or membranes of both symbionts just where they proliferate and form well-organized propagation structures, the soredia. The enzyme activity is first detected in a few algae undergoing aplanosporogenesis and later in medullary hyphae that reach the dividing algae by elongating perpendicularly to the thallus surface. This histochemical pattern that is associated with algal proliferation and oriented hyphal growth is characteristic of early morphogenesis of the soredia; when fully differentiated, they consist of an inner dividing alga and an outer hyphal envelope, both showing cholinesterase activity. Substrate specificity and inhibitor sensitivity of the histochemical staining indicate an acetylcholinesterase-like activity. However, extracts of the thallus areas where soredia develop give four bands of cholinesterase activity on disc electrophoresis: the two cathodal bands have the characteristics of acetylcholinesterase, the others of pseudocholinesterase. One of the latter hydrolyses propionylthiocholine very rapidly. The findings suggest that in lichen symbiosis, a cholinergic-like system participates in regulating morphogenetic processes such as cell division, oriented tip growth and alga-fungus membrane interactions. Environmental stimuli, particularly light, might trigger the development of soredia by modulating the activity of the cholinergic mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AHMADJIAN, V. (1982) Algal/fungal symbioses. InProgress of Phycological Research, Vol. 1. (Edited by ROUND, F. E. and CHAPMAN, D. S.). pp. 179–223. Amsterdam: Elsevier Biomedical.

    Google Scholar 

  • ARMBRUSTER, B. L. & WEISENSEEL, M. H. (1983) Ionic currents traverse growing hyphae and sporangia of the mycelian water moldAchlya debaryana.Protoplasma 115, 65–9.

    Google Scholar 

  • BEHRENS, H. M., WEISENSEEL, M. H. & SIEVERS, A. (1982) Rapid changes in the pattern of electric current around the root tip ofLepidium sativum (L.) following gravistimulation.Plant Physiol. 70, 1079–83.

    Google Scholar 

  • BLATT, M. R., WEISENSEEL, M. H. & HAUPT, W. (1981) A light-dependent current associated with chloroplast aggregation in the algaVaucheria sessilis.Planta 152, 513–26.

    Google Scholar 

  • BORGENS, R. B. (1982) What is the role of naturally produced electric current in vertebrate regeneration and healing?Int. Rev. Cytol. 76, 245–98.

    Google Scholar 

  • BORGENS, R. B., ROULEAU, M. F. & DELANNEY, L. E. (1983) A steady efflux of ionic current predicts hind limb development in the axolotl.J, Exp. Zool. 228, 491–503.

    Google Scholar 

  • BURNS, C. P. & ROZENGURT, E. (1984) Extracellular Na+ and initiation of DNA synthesis: role of intracellular pH and K+.J. Cell Biol. 98, 1082–9.

    Google Scholar 

  • BUZNIKOV, G. A. (1980) Biogenic monoamines and acetylcholine in Protozoa and metazoan embryos. InNeurotransmitters: Comparative Aspects (Edited by SALÁNKI, J. and TURPAEV, T. M.) pp. 7–29. Budapest: Akadémiai Kiadó.

    Google Scholar 

  • BUZNIKOV, G. A. & SHMUKLER, Y. B. (1981) Possible role of ‘prenervous’ neurotransmitters in cellular interactions of early morphogenesis: a hypothesis.Neurochem. Res. 6, 55–68.

    Google Scholar 

  • CHEN, T-H. & JAFFE, L. F. (1979) Forced calcium entry and polarized growth ofFunaria spores.Planta 144, 401–6.

    Google Scholar 

  • DARBISHIRE, O. V. (1897) Die deutschen Pertusariaceen mit besondered Berücksichtigung ihrer Sorredien bildung.Engl. Bot, Jahr. 22, 593–671.

    Google Scholar 

  • DETTBARN, W. D. (1962) Acetylcholinesterase activity inNitella.Nature 194, 1175–6.

    Google Scholar 

  • DREWS, U. Cholinesterase in embryonic development.Prog. Histochem. Cytochem. 7, 1–52.

  • ERICKSON, C. A. & NUCCITELLI, R. (1984) Embryonic fibroblast motility and orientation can be influenced by physiological electric fields.J. Cell Biol. 98, 296–307.

    Google Scholar 

  • ERNST, M. & HARTMANN, E. (1980) Biochemical characterization of an acetylcholine-hydrolyzing enzyme from bean seedlings.Plant Physiol. 65, 447–50.

    Google Scholar 

  • EVANS, M. L. (1972) Promotion of cell elongation inAvena coleoptiles by acetylcholine.Plant Physiol. 50, 414–16.

    Google Scholar 

  • FALUGI, C. (1985) Histochemical localization of acetylcholinesterase in blood cells.Bas. Appl. Histochem. 29, 105–13.

    Google Scholar 

  • FALUGI, C. & RAINERI, M. (1985) Acetylcholinesterase (AChE) and pseudocholinesterase (BuChE) activity distribution pattern in early developing chick limb.J. Embryol. Exp. Morphol. 86, 89–108.

    Google Scholar 

  • FLUCK, R. A. & JAFFE, M. J. (1975) Cholinesterases from plant tissues. I. Purification and characterization of enzymes fromSolanum melogena andZea mays.Biochim. Biophys. Acta,410, 130–4.

    Google Scholar 

  • GOLDSWORTHY, A. & RATHORE, K. S. (1985) The electrical control of growth in plant tissues cultures: the polar transport of auxin.J. Exp. Bot. 36, 1134–41.

    Google Scholar 

  • GOODWIN, B. C. & PATEROMICHELAKIS, S. (1979) The role of electrical fields, ions, and the cortex in the morphogenesis ofAcetabularia.Planta 145, 427–35.

    Google Scholar 

  • GUPTA, R. & MAHESHWARI, S. C. (1980) Preliminary characterization of a cholinesterase from roots of Bengal gram -Cicer arietinum L.Plant & Cell Physiol. 21, 1675–9.

    Google Scholar 

  • HARTMANN, E. (1975) Influence of light on the bioelectric potential of the bean (Phaseolus vulgaris) hypocotyl hook.Physiol. Plant. 33, 266–75.

    Google Scholar 

  • HARTMANN, E. (1977) Influence of acetylcholine and light on the bioelectric potential of bean (Phaseolus vulgaris) hypocotyl hook.Plant & Cell Physiol. 18, 1203–7.

    Google Scholar 

  • HARTMANN, E. & KIBLINGER, H. (1974a) Gas-liquid chromatographic determination of light-dependent acetylcholine concentration in moss callus.Biochem. J. 137, 249–52.

    Google Scholar 

  • HARTMANN, E. & KIBLINGER, H. (1974b) Occurrence of lightdependent acetylcholine concentrations in higher plants.Experientia 30, 1387–8.

    Google Scholar 

  • HESKETH, T. R., MOORE, J. P., MORRIS, J. D. H., TAYLOR, M. V., ROGERS, J., SMITH, G. A. & METCALFE, J. C. (1985) A common sequence of calcium and pH signals in the mitogenic stimulation of eukaryotic cells.Nature 313, 481–4.

    Google Scholar 

  • HOITINK, A. W. & DIJK, G. V. (1965) The influence of neurohumoral transmitter substances on protoplasmic streaming in the MyxomycetePhysarella oblonga.J. Cell. Physiol. 67, 133–40.

    Google Scholar 

  • HOSHINO, T. (1983a) Effects of acetylcholine on the growth of theVigna seedlings.Plant & Cell Physiol. 24, 551–6.

    Google Scholar 

  • HOSHINO, T. (1983b) Identification of acetylcholine as a natural constituent ofVigna seedlings.Plant & Cell Physiol. 24, 829–34.

    Google Scholar 

  • JAFFE, M. J. (1970) Evidence for the regulation of phytochrome-mediated processes in bean roots by the neurohumor, acetylcholine.Plant Physiol. 46, 768–77.

    Google Scholar 

  • JAFFE, M. J. (1972) Acetylcholine as a native metabolic regulator of phytochrome-mediated processes in bean roots. InRecent Advances in Phytochemistry. Vol. 5, (Edited by RUNECKLES, V. C. and TSO, T. C.) pp. 81–104. New York, Academic Press.

    Google Scholar 

  • JAFFE, L. F. (1982) Developmental currents, voltages and gradients. InDevelopmental Order: its Origin and Regulation. (Edited by SUBTELNY, S. and GREEN, P. B.) pp. 183–215. New York: Alan R. Liss.

    Google Scholar 

  • JAMIESON, JR, G. A., FRAZIER, W. A. & SCHLESINGER, P. H. (1984) Transient increase in intracellular pH duringDictyostelium differentiation.J. Cell Biol. 99, 1883–7.

    Google Scholar 

  • KARNOVSKY, M. J. & ROOTS, L. (1964) A ‘direct-coloring’ thiocholine method for cholinesterases.J. Histochem. Cytochem. 12, 219–21.

    Google Scholar 

  • KEYHANI, E. & MAIGNE, J. (1981) Acetylcholinesterase in mammalian erythroid cells.J. Cell Sci. 52, 327–39.

    Google Scholar 

  • KROPF, D. L., LUPA, M. D. A., CALDWELL, J. H. & HAROLD, F. M. (1983) Cell polarity: endogenous ion currents precede and predict branching in the water moldAchlya.Science 220, 1385–7.

    Google Scholar 

  • KROPF, D. L., CALDWELL, J. H., GOW, N. A. R. & HAROLD, F. M. (1984) Transcellular ion currents in the water moldAchlya. Amino acid proton symport as a mechanism of current entry.J. Cell Biol. 99, 486–96.

    Google Scholar 

  • LALLEMANT, R. (1972) Etude de la formation des sorédies chez le DiscolichenBuellia canescens (Dicks.) D. Notrs.Bull. Soc. Bot. Fr. 119, 463–76.

    Google Scholar 

  • LEES, G. L. & THOMPSON, J. E. (1975) The effects of germination on the subcellular distribution of cholinesterase in cotyledons ofPhaseolus vulgaris.Physiol. Plant. 34, 230–7.

    Google Scholar 

  • MCMAHON, D. (1974) Chemical messengers in development: a hypothesis.Science 185, 1012–21.

    Google Scholar 

  • MINGANTI, A., FALUGI, C., RAINERI, M. & PESTARINO, M. (1981) Acetylcholinesterase in the embryonic development: an invitation to a hypothesis.Acta Embryol. Morph. Exper. 2, 30–31.

    Google Scholar 

  • MITCHELL, P. (1976) Vectorial chemistry and the molecular mechanism of chemiosmotic coupling: power transmission by proticity.Trans. Biochem. Soc. 4, 399–430.

    Google Scholar 

  • MIURA, G. A. & SHIH, T-M. (1984) Cholinergic constituents in plants: characterization and distribution of acetylcholine and choline.Physiol. Plant. 61, 417–21.

    Google Scholar 

  • MOREAU, F. (1928) Les Lichens: morphologie, biologie, systématique. InEnciclopédie biologique, Vol. 2, pp. 77–80. Paris: Paul Lechevalier.

    Google Scholar 

  • MUKHERJEE, I. (1980) The effect of acetylcholine on hypocotyl elongation in soybean.Plant & Cell Physiol. 21, 1657–60.

    Google Scholar 

  • MÜLLER, W. A. & EL-SHERSHABY, E. (1981) Electrical current and cAMP induce lateral branching in the stolon of hydroids.Devel. Biol. 87, 24–9.

    Google Scholar 

  • NAKAJIMA, H. & HATANO, S. (1962) Acetylcholinesterase in the plasmodium of the myxomycete,Physarum polycephalum.J. Cell. Comp. Physiol. 59, 259–64.

    Google Scholar 

  • NEUMANN, E. & NACHMANSOHN, D. (1975) Nerve excitability. Towards an integrating concept. InBiomembranes, Vol. 7 (edited by MANSON, L. A.) pp. 99–166. New York: Plenum Press.

    Google Scholar 

  • ORNSTEIN, L. & DAVIS, B. (1962)Disk Electrophoresis. Parts I and II. Distillation Products Industries, Rochester, New York.

    Google Scholar 

  • OZAKI, H. (1976) Molecular properties and differentiation of acetylcholinesterase in sea urchin embryos.Devel. Growth Diff. 18, 245–57.

    Google Scholar 

  • RAINERI, M. & FALUGI, C. (1983) Acetylcholinesterase activity in embryonic and larval development ofArtemia salina Leach (Crustaceae Phyllopoda).J. Exp. Zool. 227, 229–46.

    Google Scholar 

  • RAINERI, M. & MODENESI, P. (1984) The cholinergic system: a hypothesis of its general role in living cells. InCellular and Molecular Control of Direct Cell Interactions in Developing Systems, pp. 49–50. Banyuls-sur-Mer, France: NATO—ASI.

    Google Scholar 

  • RATHORE, K. S. & GOLDSWORTHY, A. (1985) Electrical control of growth in plant tissue cultures.Biotechnology 3, 253–4.

    Google Scholar 

  • RIOV, J. & JAFFE, M. J. (1973a) Cholinesterases from plant tissues. I. Purification and characterization of a cholinesterase from mung bean roots.Plant Physiol. 51, 520–8.

    Google Scholar 

  • RIOV, J. & JAFFE, M. J. (1973b) A cholinesterase from bean roots and its inhibition by plant growth retardants.Experientia 29, 264–5.

    Google Scholar 

  • SCHWENDENER, S. (1860) Untersuchungen über der Flechtenthallus.Beitr. Wiss. Bot. (Leipzig)2, 108–86.

    Google Scholar 

  • SMITH, D. C. (1974) Transport from symbiotic algae and symbiotic chloroplast to host cells.Symp. Soc. Exper. Biol. 28, 485–520.

    Google Scholar 

  • SMITH, D. C. (1975) Symbiosis and the biology of lichenized fungi. InSymbiosis. 29th Symposium of the Society for Experimental Biology. pp. 373–405. London: Cambridge University Press.

    Google Scholar 

  • SUN, I. L., CRANE, F. L., GREBIG, C. & LOW, H. (1985) Transmembrane redox in control of cell growth. Stimulation of HeLa cell growth by ferricyanide and insulin.Exp. Cell Res. 156, 528–36.

    Google Scholar 

  • TAPPER, R. C. (1981) Direct measurement of translocation of carbohydrate in the lichen,Cladonia convoluta, by quantitative autoradiography.New Phytol. 89, 429–37.

    Google Scholar 

  • THEIDEMANN, K-U., VANITTANAKOM, P., SCHWEERS, F-M. & DREWS, U. (1986) Embryonic cholinesterase activity during morphogenesis of the mouse genital tract.Cell Tiss. Res. 244, 153–64.

    Google Scholar 

  • TOPILKO, A. & CAILLOU, B. (1985) Fine structural localization of acetylcholinesterase activity in rat submandibular gland.J. Histochem. Cytochem. 33, 439–45.

    Google Scholar 

  • TREWAVAS, A. J., SEXTON, R. & KELLY, P. (1984) Polarity, calcium and abscission: molecular bases for developmental plasticity in plants.J. Embryol. Exper. Morph. 83, (suppl.) 179–95.

    Google Scholar 

  • TSUJI, S. (1974) On the chemical basis of thiocholine methods for demonstration of acetylcholinesterase activity.Histochemistry 42, 99–105.

    Google Scholar 

  • VANITTANAKOM, P. & DREWS, U. (1985) Ultrastructural localization of cholinesterase during chondrogenesis and myogenesis in the chick limb bud.Anat. Embryol. 172, 183–94.

    Google Scholar 

  • WAALAND, S. D. & LUCAS, W. J. (1984) An investigation of the role of transcellular ion currents in morphogenesis ofGriffithsia pacifica Kylin.Protoplasma 123, 184–91.

    Google Scholar 

  • WEINBERGER, C., PENNER, P. L. & BRICK, I. (1984) Polyingression, an important morphogenetic movement in chick gastrulation.Am. Zool. 24, 545–54.

    Google Scholar 

  • WEISENSEEL, M. H., DORN, A. & JAFFE, L. F. (1979) Natural H+ currents traverse growing roots and root hairs of barley (Hordeum vulgare L.)Plant Physiol. 64, 512–18.

    Google Scholar 

  • YUNGHANS, H. & JAFFE, M. J. (1972) Rapid respiratory changes due to red light or acetylcholine during the early events of phytochrome-mediated photomorphogenesis.Plant Physiol. 49, 1–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raineri, M., Modenesi, P. Preliminary evidence for a cholinergic-like system in lichen morphogenesis. Histochem J 18, 647–657 (1986). https://doi.org/10.1007/BF01675300

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01675300

Keywords

Navigation