Skip to main content
Log in

Identification of thepurA gene encoding adenylosuccinate synthetase inThiobacillus ferrooxidans

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

ThepurA gene ofThiobacillus ferrooxidans encoding adenylosuccinate synthetase [EC 6.3.4.4] was identified in the upstream region of theiro gene encoding Fe(II)-oxidase (J. Biol. Chem 267:11242–11247, 1992). ThepurA gene consisted of 1290 base-pairs, which translated into a 29-amino-acid protein. The gene is functionally active, because it is able to complement anEscherichia coli purA-deficient strain. The deduced gene product has a high degree (60.9%) of sequence identity with that (432 aa) ofE. coli purA gene, and both the products share GDEGKGK-DETG-TKLD sequences which are supposed to be GTP-binding domain. The downstream region of theiro gene contained another open-reading frame (ORF) of 1218 bp, and this showed high homlogy (56.6% over 249 bp) withE. coli ORF-II, which is found as a second ORF and truncated form in the downstream region of thepurA gene. Comparison of the gene organization in the flanking region ofpurA gene betweenT. ferrooxidans andE. coli is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Amaya Y, Nakano A, Ito K, Mori M (1990) Isolation of a yeast gene, SRH1, that encodes a homologue of the 54k subunit of mammalian signal recognition particle. J Biochem 107:457–463

    Google Scholar 

  2. Bass MB, Fromm HJ, Stayton MM (1987) Overproduction, purification, and characterization of adenylosuccinate synthetase fromEscherichia coli Arch Biochem Biophys 256:335–342

    Google Scholar 

  3. Bernstein HD, Poritz MA, Strub K, Hoben PJ, Brenner S, Walter P (1989) Model for signal sequence recognition from amino-acid sequence of 54k subunit of signal recognition particle. Nature 340:482–486

    Google Scholar 

  4. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Google Scholar 

  5. Chamberlain JP (1979) Fluorographic detection of radioactivity in polyacrylamide gels with the water-soluble fluor, sodium salicylate. Anal Biochem 98:132–135

    Google Scholar 

  6. Clanton DJ, Hattori S, Shih TY (1986) Mutations of the ras gene product p21 that abolish guanine nucleotide binding. Proc Natl Acad Sci USA 83:5076–5080

    Google Scholar 

  7. Dever TE, Glynias MJ, Merrick WC (1987) GTP-binding domain: three consensus sequence elements with distinct spacing. Proc Natl Acad Sci USA 84:1814–1818

    Google Scholar 

  8. Fukumori Y, Yano T, Sato A, Yamanaka T (1988) Fe(II)-oxidizing enzyme purified fromThiobacillus ferrooxidans. FEMS Microb Lett 50:169–172

    Google Scholar 

  9. Hann BC, Poritz MA, Walter P (1989)Saccharomyces cerevisiae andSchizosaccharomyces pombe contain a homologue to the 54-kD subunit of the signal recognition particle that inS. cerevisiae is essential for growth. J Cell Biol 109:3223–3230

    Google Scholar 

  10. Hattori M, Sakaki Y (1986) Dideoxy sequencing method using denatured plasmid templates. Anal Biochem 152:232–238

    Google Scholar 

  11. Ingledew WJ (1982)Thiobacillus ferrooxidans. The bioenergetics of an acidophilic chemolithotroph. Biochim Biophys Acta 683:89–117

    Google Scholar 

  12. Inoue H, Nojima H, Okayama H (1990) High efficiency transformation ofEscherichia coli with plasmids. Gene 96:23–28

    Google Scholar 

  13. Jessee J (1986) New sub-cloning efficiency. Competent cells >1×106 transformants/μg. Focus 8:9

    Google Scholar 

  14. Jones DT, Reed RR (1989) Golf. An olfactory neuron specific-G protein involved in odorant signal transduction. Science 244:790–795

    Google Scholar 

  15. Kozasa T, Itoh H, Tsukamoto T, Kaziro Y (1980) Isolation and characterization of the human G2α gene. Proc Natl Acad Sci USA 85:2081–2085

    Google Scholar 

  16. Kusano T, Takeshima T, Sugawara K, Inoue C, Shiratori T, Yano Y, Fukumori Y, Yamanaka T (1992) Molecular cloning of the gene encodingThiobacillus ferrooxidans Fe(II) oxidase: high homology of the gene product with HiPIP. J Biol Chem 267:11242–11247

    Google Scholar 

  17. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685

    Google Scholar 

  18. Lauffer L, Garcia PD, Harkins RN, Coussens L, Ullrich A, Walter P (1985) Topology of signal recognition particle receptor in endoplasmic reticulum membrane. Nature 318:334–338

    Google Scholar 

  19. Lewin, B. (1990) Genes (4th ed) Oxford University Press, Oxford Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  20. Mizusawa S, Nishimura A, Seela F (1986) Improvement of the dideoxy chain-termination method of DNA sequencing by use of deoxy-7-deazaguanosine triphosphate in place of dGTP. Nucleic Acids Res 14:1319–1324

    Google Scholar 

  21. Nakano A, Muramatsu M (1989) A novel GTP-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the golgi apparatus. J Cell Biol 109:2677–2691

    Google Scholar 

  22. Pai EF, Kabsch W, Krengel U, Holmes KC, John J, Wittinghofer A (1989) Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature 341:209–214

    Google Scholar 

  23. Römisch K, Webb J, Herz J, Prehn S, Frank R, Vingron M, Dobberstein B (1989) Homology of 54k protein of signalrecognition particle, docking protein and twoE. coli proteins with putative GTP-binding domains. Nature 340:478–482

    Google Scholar 

  24. Sambrook J, Fritsch EF, Maniatis TE (1989) Molecular cloning: a laboratory manual (2nd ed). Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press

    Google Scholar 

  25. Sancar A, Hack AM, Rupp WD (1979) Simple method for identification of plasmid-coded proteins. J Bacteriol 137:692–693

    Google Scholar 

  26. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  27. Shine J, Dalgarno L (1974) The 3′-terminal sequence ofEscherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71: 1342–1346

    Google Scholar 

  28. Shiratori T, Inoue C, Sugawara K, Kusano T, Kitagawa Y (1989) Cloning and expression ofThiobacillus ferrooxidans mercury ion resistance genes inEscherichia coli. J Bacteriol 171:3458–3464

    Google Scholar 

  29. Stayton MM, Rudolph FB, Fromm HJ (1983) Regulation, genetics, and properties of adenylosuccinate synthetase: a review. Curr Top Cell Regul 22:103–141

    Google Scholar 

  30. Wakao N, Mishina M, Sakurai Y, Shiota H (1982) Bacterial pyrite oxidation. I. The effect of pure and mixed cultures ofThiobacillus ferrooxidans andThiobacillus thiooxidans on release of iron. J Gen Appl Microbiol 28:331–343

    Google Scholar 

  31. Wolfe SA, Smith JM (1988) Nucleotide sequence and analysis of thepurA gene encoding adenylosuccinate synthetase ofEscherichia coli K12. J Biol Chem 263:19147–19153

    Google Scholar 

  32. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusano, T., Takeshima, T., Inoue, C. et al. Identification of thepurA gene encoding adenylosuccinate synthetase inThiobacillus ferrooxidans . Current Microbiology 26, 197–204 (1993). https://doi.org/10.1007/BF01577377

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01577377

Keywords

Navigation