Skip to main content
Log in

Quantum number conservation in statistical models and its application top \(\bar p\)-annihilatoin at rest

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

We investigate the role of exact quantum number conservation in small statistical systems and illustrate the consequences forp \(\bar p\)-annihililation at rest. A group theoretical projection method is used to calculate a restricted canonical partition function which consists only of states allowed by the conservation laws. Special emphasis is put on the conservation of isospin, total angular momentum, andC-, G-, andP-parities. Our analysis of the partition function shows that it is increasingly dominated by two-particle states as more of the conservation laws are included. The constraining effects on various multiplicity ratios and the deviations from the unconstrained limit are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Ghesquiére et al.: Symp. on N\(\bar N\)-Interactions. CERN 74-18, Genf (1974)

  2. J. Roy: in Proc. of the Fourth International Symposium on N\(\bar N\) Interactions. Syracuse University (1975)

  3. H. Koppe: Z. Naturforschung 3A (1948) 251; Phys. Rev. 76 (1949) 688

    Google Scholar 

  4. E. Fermi: Progr. Theor. Phys. 5 (1950) 570

    Google Scholar 

  5. W.H. Barkas et al.: Phys. Rev. 105 (1957) 1037

    Google Scholar 

  6. V.M. Maksimento: Soviet Phys. JETP 6 (1958) 180

    Google Scholar 

  7. N. Yajima K. Kobayakawa: Progr. Theor. Phys. 19 (1958) 192

    Google Scholar 

  8. F. Cerulus: Nuovo Cimento 14 (1959) 827

    Google Scholar 

  9. M. Kretzschmar: Ann. Rev. Nucl. Sci. 11 (1960) 1–40

    Google Scholar 

  10. B. May et al.: Phys. Lett. 225B (1989) 450

    Google Scholar 

  11. E. Aker et al.: Phys. Lett. 260B (1991) 249

    Google Scholar 

  12. M. Mayurama, T. Ueda: Nucl. Phys. A 364 (1981) 447

    Google Scholar 

  13. J. Vandermeulen: Z. Phys. C 37 (1988) 563

    Google Scholar 

  14. C.B. Dover, T. Gutsche, M. Maruyama, A. Fäßler: Prog. Part. Nucl. Phys. 29 (1992) 8

    Google Scholar 

  15. S. Mundigl, M.V. Vacas, W. Weise: Nucl. Phys. A 523 (1991) 499

    Google Scholar 

  16. V.B. Magalinskii, Ya.P. Terletskii: Soviet Phys. JETP 5 (1957) 483

    Google Scholar 

  17. A. Pais: Ann. Phys. (N.Y.) 9 (1960) 548

    Google Scholar 

  18. F. Cerulus: Nuovo Cimento Suppl. 15 (1960) 402

    Google Scholar 

  19. Z. Koba, S. Takagi: Noouvo Cimento 18 (1960) 608

    Google Scholar 

  20. F. Cerulus; Nuovo Cimento 22 (1961) 958

    Google Scholar 

  21. B. May et al.: Z. Phys. C 46 (1990) 191

    Google Scholar 

  22. B. May et al.: Z. Phys. C 46 (1990) 203

    Google Scholar 

  23. R. Adler et al.: Phys. Lett. 267B (1991) 154

    Google Scholar 

  24. K. Redlich, L. Turko; Z. Phys. C 5 (1980) 201

    Google Scholar 

  25. L. Turko: Phys. Lett. B 104 (1981) 153

    Google Scholar 

  26. B. Müller, J. Rafelski: Phys. Lett. 116B (1982) 274

    Google Scholar 

  27. R. Hagedorn, K. Redlich: Z. Phys. C 27 (1985) 541

    Google Scholar 

  28. Th. Elze, W. Greiner: Phys. Rev. A 33 (1986) 1879

    Google Scholar 

  29. J.H. Kim, H. Toki: Progr. Theor. Phys. 78 (1987) 616

    Google Scholar 

  30. V.B. Magalinskii, Ya.P. Terletskii: Soviet Phys. JETP 2 (1956) 146

    Google Scholar 

  31. P. Koch et al.: Phys. Lett. B 123 (1983) 151

    Google Scholar 

  32. C. Derreth et al.: Phys. Rev. C 31 (1985) 1360

    Google Scholar 

  33. W. Greiner, B. Müller: Quantenmechanik, Teil 2: Symmetrien. p. 408 Frankfurt: Harry Deutsch 1990

    Google Scholar 

  34. F. Cerulus: Nuovo Cimento 19 (1961) 528

    Google Scholar 

  35. W.M. Gibson, B.R. Pollard: Symmetry principles in elementary particle physics, chapts. 7 and 8. Cambridge University Press 1976

  36. Compilation of cross-sections III:p and\(\bar p\) induced reactions, CERN-HERA 84-01, Genf (1984)

  37. J. McConnell, J. Shapiro: Nuovo Cimento 28 (1963) 1272

    Google Scholar 

  38. J. Sollfrank, P. Koch, U. Heinz: Z. Phys C 52 (1991) 593

    Google Scholar 

  39. R. Hamatsu et al.: Nucl. Phys. B 123 (1977) 189

    Google Scholar 

  40. B.S. Chaudhary et al.: Symp. on N\(\bar N\)-Interactions. CERN 74-18, Genf (1974)

  41. T. Fields et al.: in: Symp. on N\(\bar N\)-Interactions, CERN 74-18, Genf (1974)

  42. J. Fry: in: 4th Int. Symp. on Multiparticle Hydrodynamics, Pavia (1973)

  43. S. Barish et al.: Phys. Rev. D 9 (1974) 2689

    Google Scholar 

  44. G.D. Patel et al.: Z. Phys. C 12 (1982) 189

    Google Scholar 

  45. M. Markytan et al.: Nucl. Phys. B 143 (1978) 263

    Google Scholar 

  46. A.M. Cooper et al.: Nucl. Phys. B 136 (1978) 365

    Google Scholar 

  47. M. Chiba et al.: Phys. Rev. D 39 (1989) 3227

    Google Scholar 

  48. G. Backenstoss et al.: Nucl. Phys. B 228 (1983) 424

    Google Scholar 

  49. M. Doser et al.: Nucl. Phys A 486 (1988) 493

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by DFG

Supported in part by BMFT and DFG

Work supported in part by DFG, BMFT and GSI

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blümel, W., Koch, P. & Heinz, U. Quantum number conservation in statistical models and its application top \(\bar p\)-annihilatoin at rest. Z. Phys. C - Particles and Fields 63, 637–650 (1994). https://doi.org/10.1007/BF01557630

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01557630

Keywords

Navigation