Skip to main content
Log in

Mutations in the structural genes of CHO cell histidyl-, valyl-, and leucyl-tRNA synthetases

  • Published:
Somatic Cell Genetics

Abstract

Forty-three temperature-sensitive mutants were isolated in the CHO cell line by selecting for noncycling cells using [3H]TdR and cytosine arabinoside. Cell division was extremely temperature sensitive in eight of the mutants, and these were studied in more detail. In seven of these eight mutants, the in vitro specific activity of a single aminoacyl-tRNA synthetase was greatly reduced; four had reduced levels of histidyl-tRNA synthetase, two of valyl-tRNA synthetase, and one of leucyl-tRNA synthetase. Cell hybridization studies showed that the mutants formed three complementation groups. In six of the seven mutants the aminoacyl-tRNA synthetase which had reduced activity was also more thermolabile than the wild-type enzyme. The spontaneous reversion frequency was low for these mutants, and in most cases could be increased by treatment with a chemical mutagen. The isolation of the valyl-tRNA synthetase mutant reported here brings to eight the number of different aminoacyl-tRNA synthetase mutants isolated in the CHO cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Thompson, L. H., and Baker, R. M. (1973). InMethods in Cell Biology, Vol. 6, (ed.) Prescott, D. M. (Academic Press, New York) pp. 209–281.

    Google Scholar 

  2. Basilico, C. (1977).Adv. Cancer Res. 24:223.

    PubMed  Google Scholar 

  3. Wasmuth, J. J., and Caskey, C. T. (1976).Cell 9:655.

    PubMed  Google Scholar 

  4. Haralson, M. A., and Roufa, D. J. (1975).J. Biol. Chem. 250:8618.

    PubMed  Google Scholar 

  5. Liskay, R. M. (1974).J. Cell Physiol. 84:49.

    PubMed  Google Scholar 

  6. Hatzfeld, J., and Buttin, G. (1975).Cell 5:123.

    PubMed  Google Scholar 

  7. Thompson, L. H., Stanners, C. P. and Simonvitch, L. (1975).Somat. Cell Genet. 1:187.

    PubMed  Google Scholar 

  8. Thompson, L. H., Lofgren, D. J., and Adair, G. M. (1977).Cell 11:157.

    PubMed  Google Scholar 

  9. Hankinson, O. (1976).Somat. Cell Genet. 2:497.

    Google Scholar 

  10. Sato, K. (1975).Nature 257:813.

    PubMed  Google Scholar 

  11. Kao, F. T., and Puck, T. T. (1968).Proc. Natl. Acad. Sci. U.S.A. 60:1275.

    PubMed  Google Scholar 

  12. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193:265.

    PubMed  Google Scholar 

  13. Davidson, R. L., and Gerald, P. S. (1976).Somat. Cell Genet. 2:165.

    PubMed  Google Scholar 

  14. Baker, R. M., Brunette, D. M., Mankovitz, R., Thompson, L. H., Whitmore, G. F., Simonovitch, L., and Till, J. E. (1974).Cell 1:9.

    Google Scholar 

  15. Fincham, J. R. S. (1966).Genetic Complementation. (W. A. Benjamin, New York).

    Google Scholar 

  16. Söll, D., and Schimmel, P. R. (1974). InThe Enzymes, Vol. 10, (ed). Boyer, P. D. (Academic Press, New York) pp. 489–538.

    Google Scholar 

  17. Kaplan, S., and Anderson, D. (1968).J. Bacteriol. 95:991.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashman, C.R. Mutations in the structural genes of CHO cell histidyl-, valyl-, and leucyl-tRNA synthetases. Somat Cell Mol Genet 4, 299–311 (1978). https://doi.org/10.1007/BF01542844

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01542844

Keywords

Navigation