Skip to main content
Log in

Host immune response in renal cell cancer: Interleukin-4 (IL-4) and IL-10 mRNA are frequently detected in freshly collected tumor-infiltrating lymphocytes

  • Original Article
  • Renal Cell Cancer, Tumor-Infiltrating Lymphocytes, Interleukin-10
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Human renal cell cancer (RCC) is clearly responsive to immunotherapy. Clinical responses may be mediated by “non-specific” (e. g. natural killer, NK, cells) or “specific” MHC-class-I-restricted tumor-specific CD8+ T lymphocytes. Typically RCC progresses, however, despite significant infiltration of various lymphoid cells. We examined freshly isolated RCC tumor-infiltrating lymphocytes (TIL) derived from seven RCC patients for cytokine expression by the polymerase chain reaction (PCR). Established RCC tumor cell lines derived from these RCC patients were negative for interleukin-2 (IL-2), IL-4, IL-10, and interferon γ and found to be positive for tumor necrosis factor α (TNFα), IL-6, IL-1β, granulocyte/macrophage-colony-stimulating factor (GM-CSF), and transforming growth factor β1 (TGFβ1) message as detected by PCR. An identical pattern of cytokine mRNA expression was identified in other long-term RCC lines and in normal human kidney cells upon culture, but not in two Wilms tumor cell lines tested. Short-term-, and long-term-established RCC lines, but not Wilms tumor lines, secreted substantial levels of GM-CSF, TNFα, IL-1β, and IL-6 as detected by enzyme-linked immunosorbent assay. Both RCC lines and Wilms tumor lines secreted TGFβ1. In comparison, normal kidney cells secreted IL-6 and GM-CSF, but not IL-1β, or TFGβ1 under identical in vitro cell culture conditions. We applied PCR-based methods to characterize the cytokine mRNA expression pattern in immune cells infiltrating into renal cell cancer without the need for expansion of such effector cells in vitro. Examining freshly collected RCC TIL by PCR from patients with primary cell cell cancer, we could demonstrate that such cells, but not lympho-mononuclear cells harvested from normal human kidney tissue, typically exhibit IL-4 and IL-10 mRNA expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gnarra JR, Tory K, Weng Y, Schmidt L, Wei MH, Li H, Latif F, Liu S, Chen F, Duh F-M, Lubensky I, Duan DR, Florence C, Pozzatti R, Walther MM, Bander NH, Grossman HB, Brauch H, Pomer S, Brooks JD, Isaacs WB, Lerman MI, Zbar B, Linehan WM (1994) Mutations of the VHL tumour suppressor gene in renal carcinoma. Nature Genetics 7: 85–90

    PubMed  Google Scholar 

  2. Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Robertson WM, Lee RE, Rubin JT, Seipp CA, Simpson CG, White DE (1987) A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin 2 alone. N Engl J Med 316: 889–897

    PubMed  Google Scholar 

  3. Belldegrun A, Muuo LM, Rosenberg SA (1988) Interleukin 2 expanded tumor-infiltrating lymphocytes in human renal cell cancer: isolation, characterization, and antitumor activity. Cancer Res 48: 206–214

    PubMed  Google Scholar 

  4. Kim TY, Eschenbach AA von, Filaccio MD, Hayakawa K, Parkinson DR, Balch CM, Itoh K (1990) Clonal analysis of lymphocytes from tumor, peripheral blood, and nontumorous kidney in primary renal cell carcinoma. Cancer Res 50: 5263–5268

    PubMed  Google Scholar 

  5. Whiteside, TL, Miescher S, Hurlimann J, Moretta L, Fliedner V von (1986) Separation, phenotyping and limiting dilution analysis of T-lymphocytes infiltrating human solid tumors. Int J Cancer 37: 803–811

    PubMed  Google Scholar 

  6. Finke JH, Zea AH, Stanley J, Longo DL, Mizoguchi H, Tubss R, Wiltrout RH, O'Shea JJ, Kudoh S, Klein E, Bukowski RM, Ochoa AC (1993) Loss of T-cell receptor ζ chain and p65lck in T-cells infiltrating human renal cell carcinoma. Cancer Res 53: 5613–5616

    PubMed  Google Scholar 

  7. Schendel DJ, Gansbacher B, Oberneder R, Kriegmair M, Hofstetter A, Riethmueller G, Segurado OG (1993) Tumor-specific lysis of human renal cell carcinomas by tumor infiltrating lymphocytes. I. HLA-A2-restricted recognition of autologous and allogeneic tumor lines. J Immunol 151: 4209–4221

    PubMed  Google Scholar 

  8. Schendel DJ, Gansbacher B (1993) Tumor-specific lysis of human renal cell carcinomas by tumor-infiltrating lymphocytes: modulation of recognition through retroviral transduction of tumor cells with interleukin 2 complementary DNA and exogenous a interferon treatment. Cancer Res 53: 4020–4025

    PubMed  Google Scholar 

  9. Bernhard H, Karbach J, Wolfel T, Stoerkel S, Huber Ch, Meyer zum Buschenfelde K-H, Knuth A (1995) Human renal cell carcinomas and normal kidney cells share antigens recognized by HLA-A2 restricted cytotoxi T lymphocyte (CTL) clones. Int J Cancer (in press)

  10. Finke JH, Rayman P, Edinger M, Tubbs RR, Stanley J, Klein E, Bukowski R (1992) Characterization of a human renal cell carcinoma specific cytotoxic CD8+ T cel line. J Immunother 11: 1–11

    PubMed  Google Scholar 

  11. Taga K, Tosato G (1992) IL-10 inhibits human T cell proliferation and IL-2 production. J Immunol 148: 1143–1150

    PubMed  Google Scholar 

  12. Whiteside TL, Miescher S, MacDonald HR, Fliedner V von (1986) Separation of tumor infiltrating lymphocytes from tumor cells in human solid tumors. A comparison between velocity sedimentation and discontinous density gradients. J Immunol Methods 90: 221–223

    PubMed  Google Scholar 

  13. Elder EM, Whiteside TL (1992) Processing of tumors for vaccine and/or tumor infiltrating lymphocytes: In: Rose NR, Conway de Macario E, Fahey JL, Friedman H, Penn GM (eds) Manual of clinical laboratory immunology, 4th edn. American Society for Microbiology, pp 817–819

  14. Finstad CL, Cordon-Caro C, Bander NH, Whitmore WF, Melamed MR, Old LJ (1985) Specificity analysis of mouse monoclonal antibodies defining cell surface antigens of human renal cell cancer. Proc Natl Acad Sci USA 82: 2955–2959

    PubMed  Google Scholar 

  15. Andy RJ, Finstad CL, Old LJ, Lloyd KO, Kornfeld R (1984) The antigen identified by a mouse monoclonal antibody raised against human renal cell cancer cells is the adenosine deaminase binding protein. J Biol Chem 259: 12844–12849

    PubMed  Google Scholar 

  16. Fradet Y, Cordon-Cardo C, Thomsaon T, Daly ME, Whitmore MF, Lloyd KO, Melamed MR, Old LJ (1984) Cell surface antigens of human bladder cancer defined by mouse monoclonal antibodies. Proc Natl Acad Sci USA 81: 224–228

    PubMed  Google Scholar 

  17. Rubin JT, Elwood LJ, Rosenberg SA, Lotze MT (1987) Immunohistological correlates of response to recombinant interleukin-2 based immunotherapy in humans. Cancer Res 49: 77–86

    Google Scholar 

  18. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156–159

    PubMed  Google Scholar 

  19. Genevee C, Diu A, Nierat J, Caignard A, Dietrich P, Ferradini L, Roman-Roman S, Triebel F, Hercend T (1992) An experimentally validated panel of subfamily-specific oligonucleotide primers (vα1-w29/vβ1-24) for the study of human T cell receptor variable gene segment usage by polymerase chain reaction. Eur J Immunol 22: 1261–1268

    PubMed  Google Scholar 

  20. Belldegrun A, Kasid A, Uppenkamp M, Topalian SL, Rosenberg SA (1989) Human tumor infiltrating lymphocytes. Analysis of lymphokine mRNA expression and relevance to cancer immunotherapy. J Immunol 142: 4520–4526

    PubMed  Google Scholar 

  21. Alexander JP, Kudoh S, Melsop KA, Hamilton TA, Edinger MG, Tubbs RR, Sica D, Tuason L, Klein E, Bukowski RM (1993) T-cells infiltrating renal cell carcinoma display a poor proliferative response even though they can produce interleukin 2 and express interleukin 2 receptors. Cancer Res 53: 1380–1387

    PubMed  Google Scholar 

  22. Schoof DD, Terashima Y, Peoples GE, Goedegebuure PS, Andrews JVR, Richie JP, Eberlein TJ (1993) CD4+ T cell clones isolated from human renal cell carcinoma posses the functional characteristics of Th2 helper cells. Cell Immunol 150: 114–123

    PubMed  Google Scholar 

  23. Janeway CA Jr, Bottomly K (1994) Signals and signs for lymphocyte responses. Cell 76: 275–285

    PubMed  Google Scholar 

  24. Salgame P, Abrams JS, Clayberger C, Goldstein H, Convit J, Moldion RL, Bloom BR (1992) Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science 254: 279–281

    Google Scholar 

  25. Waal Malefyt R de, Abrams J, Bennett B, Figdor CG, Vries JE de (1991) Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 174: 1209–1220

    PubMed  Google Scholar 

  26. Enk A, Katz SI (1992) Identification and induction of keratinocyte-derived IL-10. J Immunol 149: 92–95

    PubMed  Google Scholar 

  27. Pisa P, Halapi E, Pisa EK, Gerdin E, Hising C, Bucht A, Gerdin B, Kiessling R (1992) Selective expression of interleukin 10, interferon γ, and granulocyte-macrophage colony-stimulating factor in ovarin cancer biopsies. Proc Natl Acad Sci USA 89: 7708–7712

    PubMed  Google Scholar 

  28. Ghalib H, Piuvezam R, Skeiky Y, Siddig M, Hashim F, El-Hassan A, Russo D, Reed S (1993) Interleukin 10 production correlates with pathology in humanLeishmania donovani infections. J Clin Invest 92: 324–329

    PubMed  Google Scholar 

  29. Banner BF, Burham JA, Bahnson RR, Ernstoff MS, Auerbach HE (1990) Immunophenotypic markers in renal cell carcinoma. Mod Pathol 3: 129–134

    PubMed  Google Scholar 

  30. Igarashi T, Murakami S, Takahashi H, Matsuzaki O, Shimazaki J (1990) Changes in distribution of CD4+/CD45RA-and CD8+/CD11- cells in tumor-infiltrating lymphocytes of renal cell carcinoma associated with tumor progression. Eur Urol 22: 323–328

    Google Scholar 

  31. Krams SM, Chung SJ, Lu Y, Smith H, Lagios M, Martinez OM (1994) T helper cell-derived cytokines may have a role in breast tumor progression (abstract). FASEB J 8: 5734

    Google Scholar 

  32. Uyemura K, Moy RL, Dubinett S, Tomono S, Modlin RL (1994) IL-10 production in basal cell carcinoma and mechanism for evading the local immune response (abstract). FASEB J 8: 1329

    Google Scholar 

  33. Waal Malefyt R de, Haanen J, Spits H, Roncarolo M-G Te Velde A, Figdor CG, Johnson K, Kastelein R, Issel H, Vries JE de (1991) IL-10 and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via down-regulation of class II MHC expression. J Exp Med 174: 279–287

    Google Scholar 

  34. Beissert S, Hosoi J, Grabbe S, Asahina A, Granstein RD (1995) IL-10 inhibitis tumor antigen presentation by epidermal antigen-presenting cells. J Immunol 154: 1280–1286

    PubMed  Google Scholar 

  35. Garvin AJ, Re GG, Tarnowski BI, Hazen-Martin DJ, Sens DA (1993) The G-401 cell line, utilized for studies od chromosomal changes in Wilms tumor, is derived from a rhabdoid tumor of the kidney. Am J Pathol 142: 375–380

    PubMed  Google Scholar 

  36. Miki S, Ieano M, Miki Y, Yamamoto M, Tang B, Yokokawa K, Sonoda T, Hirano T, Kishimoto T (1989) IL-6 functions as an autocrine growth factor in renal carcinomas. FEBS Lett 250: 607–610

    PubMed  Google Scholar 

  37. Blay J-Y, Negrier S, Combaret V, Attali S, Goillot E, Merrouche Y, Mercatello A, Ravault A, Tourani J-M, Moskovtchenko J-F, Philip T, Favrot M (1992) Serum levels of interleukin 6 as a prognosis factor in metastatic renal cell carcinoma. Cancer Res 52: 3317–3322

    PubMed  Google Scholar 

  38. Rodeck U, Bossler A, Graeven U, Fox FE, Nowell PC, Knabbe C, Kari C (1994) Transforming growth factor β production and responsiveness in normal human melanocytes and melanoma cells. Cancer Res 54: 575–581

    PubMed  Google Scholar 

  39. Maghazachi AA, Al-Aoukaty A (1993) Transforming growth factor beta 1 is chemotactic for interleukin-2-activated natural killer cells. Nat Immun 12: 57–65

    PubMed  Google Scholar 

  40. Ortalso JR, Mason AT, O'Shea JJ, Smyth MJ, Falk LA, Kennedy ICS, Longo DL, Ruscetti FW (1991) Mechanistic studies of transforming growth factor-β inhibition of IL-2-dependent activation of CD3-large granular lymphocyte functions. J Immunol 146: 3791–3798

    PubMed  Google Scholar 

  41. Tsuchiya Y, Igarashi M, Suzuki R, Kumagai K (1988) Production of colony-stimulating factor by tumor cells and the factor-mediated induction of suppressor cells. J Immunol 141: 699–708

    PubMed  Google Scholar 

  42. Araki M, Yano T, Hayashi H, Takii T, Suzuki K, Onozaki K (1994) Resistance to the anti-proliferative effect of IL-1 on human melanoma cell lines is associated with endogenous production of IL-1 and IL-6. Int J Cancer 56: 275–280

    PubMed  Google Scholar 

  43. Springgs DR, Imamura K, Rodriguez C, Sariban E, Kufe DW (1988) Tumor necrosis factor expression in human epithelial tumor cell lines. J Clin Invest 81: 455–460

    PubMed  Google Scholar 

  44. Spriggs D, Imamura K, Rodriguez C, Horiguchi J, Kufe DW (1987) Induction of tumor necrosis factor expression and resistance in a human breast tumor cell line. Proc Natl Acad Sci USA 84: 6563–6566

    PubMed  Google Scholar 

  45. Takeyama H, Wakamiya N, O'Hara C, Arthur K, Niloff J, Kufe D, Sakarai K, Spriggs D (1991) Tumor necrosis factor expression by human ovarian carcinoma in vivo. Cancer Res 51: 4476–4480

    PubMed  Google Scholar 

  46. Sculze-Osthoff K, Beyaert R, Vandevoorde V, Haegeman G, Fiers W (1993) Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-induced effects of TNF. EMBO J 12: 3095–3104

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maeurer, M.J., Martin, D.M., Castelli, C. et al. Host immune response in renal cell cancer: Interleukin-4 (IL-4) and IL-10 mRNA are frequently detected in freshly collected tumor-infiltrating lymphocytes. Cancer Immunol Immunother 41, 111–121 (1995). https://doi.org/10.1007/BF01527407

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01527407

Key words

Navigation