Skip to main content
Log in

Radiative excitation of the harmonic oscillator with applications to stereomutation in chiral molecules

  • Special Issue Dedicated To Friedrich Hurd On The Occasion Of His 100th Birthday
  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

We present theoretical considerations and quantitative numerical simulations of the coherent radiative excitation of chiral molecules exhibiting a double well potential in the electronic ground state (with stable enantiomers) and a harmonic oscillator potential with achiral minimum geometry in the excited electronic state following a scheme proposed in [33]. The one-dimensional short time dynamics is presented on the femtosecond time scale. We demonstrate the phenomena of quasiexponential, radiationless decay of the survival probability in the excited electronic state by simple harmonic oscillator wave packet motion, as well as coherent periodic chiral stereomutation. The differences and similarities of the excited state harmonic oscillator dynamics with two quite different ground state potentials are discussed. A designed pulse sequence allows for chemically efficient laser controlled stereomutation with high enantiomeric specificity. The results are discussed in relation to Friedrich Hund's early work on stereomutation by tunneling and in relation to our current understanding of chiral molecules including dynamical chirality and anharmonic vibrational dynamics on the femtosecond time scale and the violation of parity and other fundamental symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zare, R.N.: Angular momentum. New York: Wiley 1988

    Google Scholar 

  2. Hund, F.: Z. Phys.36, 257 (1926);37, 742 (1927);40, 742 (1927);42, 93 (1927);43, 788 (1927);51, 759 (1928)

    Google Scholar 

  3. Mulliken, R.S.: Phys. Rev.32, 186 (1928); Mulliken, R.S.: J. Chem. Phys.43, 22 (1965); Pure Appl. Chem.24, 203 (1970); Ann. Rev. Phys. Chem.29, 1 (1978); Nobel prize lecture in Les Prix Nobel en 1966, p. 137

    Google Scholar 

  4. Hund, F.: Z. Phys.43, 805 (1927)

    Google Scholar 

  5. van't Hoff, J.H.: Arch. Neerl. Sci. Exactes Nat.9, 445 (1874);

    Google Scholar 

  6. le Bel, J.A.: Bull. Soc. Chim. Fr.22, 337 (1874): English translations of both papers appear in Classics in the Theory of Chemical Combinations. O.T. Benfey, (ed.) New York: Dover Publications 1963

    Google Scholar 

  7. van't Hoff, J.H.: Vorlesungen über theoretische und physikalische Chemie, Bd. 2. Braunschweig: Vieweg 1899; Die Lagerung der Atome im Raume. Braunschweig: Vieweg 1876; In: Bazendijk, P.M. (ed.) La chimie dans l'espace. Rotterdam 1887

    Google Scholar 

  8. Janoschek, R.: In: Chirality. Janoschek, R. (ed.) p. 18. Berlin: Springer 1991

    Google Scholar 

  9. Gamow, G.: Z. Phys.51, 204 (1928)

    Google Scholar 

  10. Guerney, R.W., Condon, E.U.: Nature122, 439 (1928)

    Google Scholar 

  11. Fowler, R.H., Nordheim, L.: Proc. Roy. Soc. A119, 173 (1928)

    Google Scholar 

  12. Quack, M.: Chapter 27 in Femtosecond Chemistry. Manz, J., Woeste, L. (eds.) Proc. Berlin Conf. Femtosecond Chemistry Berlin (March 1993). Weinheim: Verlag Chemie 1994, pp. 781–818

    Google Scholar 

  13. Quack, M., Stockburger, M.: J. Mol. Spectrosc.43, 87 (1972)

    Google Scholar 

  14. Quack, M.: Angew. Chem.101, 588 (1989); Angew. Chem. Int. Ed. English28, 571 (1989)

    Google Scholar 

  15. Lee, T.D., Yang, C.N.: Phys. Rev.104, 254 (1956); Wu, C.S., Ambler, E., Hayward, R.W., Hoppes, D.D., Hudson, R.P.: Phys. Rev.105, 1413 (1957)

    Google Scholar 

  16. Salam, A.: Proc. Eighth Nobel Symp. Stockholm (1968) p. 367

  17. Weinberg, S.: Phys. Rev. Lett.19, 1264 (1967)

    Google Scholar 

  18. Glashow, S.L.: Nucl. Phys.22, 579 (1961)

    Google Scholar 

  19. Primas, H.: Chemistry, quantum mechanics and reductionism. Berlin: Springer 1981

    Google Scholar 

  20. Pfeifer, P.: In: Energy storage and redistribution in molecules. (Proc. of Two Workshops, Bielefeld 1980) Hinze, J. (ed.) New York: Plenum 1983, p. 315

    Google Scholar 

  21. Amann, A.: In: Fractals, quasicrystals, chaos, knots and algebraic quantum mechanics. Amann, A. (ed.) Dordrecht: Kluwer 1988, p. 305; see also Amann, A., Gans, W.: Angew. Chem.101, 277 (1989); Angew. Chem. Int. Ed. English28, 268 (1989)

    Google Scholar 

  22. Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W.: Rev. Mod. Phys.59, 1 (1987)

    Google Scholar 

  23. Harris, R.A., Stodolsky, L.: J. Chem. Phys.74, 2145 (1981)

    Google Scholar 

  24. Quack, M.: Hund/Klemm lecture. Wie bewegen sich Moleküle?, Max-Planck-Institut Stuttgart 1986 (partly published in [12]); Die Symmetrie von Zeit und Raum und ihre Verletzung in molekularen Prozessen. Jahrbuch 1990–1992 der Akademie der Wissenschaften zu Berlin. Berlin: de Gruyter, W. p. 469; In: Conceptual Tools for Understanding Nature. Proc. 2nd Int Symp of Science and Epistemology Seminar, Trieste April 1993. Costa, G., Calucci, G., Giorgi, M. (eds.) Singapore: World Scientific Publ. 1995, p. 172

  25. Rein, D.W.: J. Mol. Evol.4, 15 (1974)

    Google Scholar 

  26. Letokhov, V.S.: Phys. Lett. A53, 275 (1975)

    Google Scholar 

  27. Ya Zeldovich, B., Saakyan, D.B., Sobelman, I.I.: Sov. Phys. JETP Lett.25, 94 (1977)

    Google Scholar 

  28. Harris, R.A., Stodolsky, L.: Phys. Lett.78B, 313 (1978); J. Chem. Phys.73, 3862 (1980)

    Google Scholar 

  29. Rein, D.W., Hegstrom, R.A., Sandars, P.G.H.: Phys. Lett.71A, 499 (1979)

    Google Scholar 

  30. Hegstrom, R.A., Rein, D.W., Sandars, P.G.H.: J. Chem. Phys.73, 2329 (1980)

    Google Scholar 

  31. Mason, S.: Nature (London)314, 400 (1985)

    Google Scholar 

  32. Mason, S.F., Tranter, G.: Chem. Phys. Lett.94, 34 (1983); Mol. Phys.53, 1091 (1984)

    Google Scholar 

  33. Tranter, G.E.: Chem. Phys. Lett.120, 83 (1985); ibid.121, 339 (1985); Mol. Phys.56, 825 (1985); Chem. Phys. Lett.135, 279 (1987); Nachr. Chem. Techn. Lab.34, 866 (1986); Nature (London)318, 172 (1985)

    Google Scholar 

  34. Bakasov, A., Ha, T.K., Quack, M.: to be published

  35. Quack, M.: Chem. Phys. Lett.132, 147 (1986)

    Google Scholar 

  36. Cina, J., Harris, R.A.: J. Chem. Phys.100, 2531 (1994)

    Google Scholar 

  37. Quack, M.: J. Mol. Struct.292, 171 (1993); ibid.347, 245 (1995)

    Google Scholar 

  38. Quack, M.: Verh. Dtsch. Phys. Ges. IV28, 243 (1993); Chem. Phys. Lett.231, 421 (1994)

    Google Scholar 

  39. Barron, L.D.: Chem. Phys. Lett.221, 311 (1994)

    Google Scholar 

  40. Dohle, M., Manz, J., Paramonov, G.K.: Ber. Bunsenges. Phys. Chem.99, 478 (1995); see also D.J. Tannor and S.A. Rice, J. Chem. Phys.83, 5013 (1985) for related strategies of reaction control and D.W. Lupo and M. Quack, Chem. Rev.87, 181 (1987) for a review of mode selectivity in reaction control

    Google Scholar 

  41. Quack, M., Sutcliffe, E.: Infrared Phys.25, 163 (1985)

    Google Scholar 

  42. Marquardt, R., Quack, M.: J. Chem. Phys.90, 6320 (1989); Infrared Phys.29, 485 (1989)

    Google Scholar 

  43. Marquardt, R., Quack, M.: J. Phys. Chem.94, 3486 (1994)

    Google Scholar 

  44. Pepper, M.J., Shavitt, I., Schleyer, P.v.R., Glukhovtsev, M.N., Janoschek, R., Quack, M.: J. Comp. Chem.16, 207 (1995)

    Google Scholar 

  45. Peyerimhoff, S.D., Lewerenz, M., Quack, M.: Chem. Phys. Lett.109, 563 (1984)

    Google Scholar 

  46. Marquardt, R., Quack, M., Stohner, J., Sutcliffe, E.: J. Chem. Soc. Faraday Trans. II.82, 1173 (1986)

    Google Scholar 

  47. Lewerenz, M., Quack, M.: J. Chem. Phys.88, 5408 (1988)

    Google Scholar 

  48. Marquardt, R., Quack, M.: J. Chem. Phys.95, 4854 (1991)

    Google Scholar 

  49. Manz, J., Wöste, L.: Femtosecond chemistry, Vols. 1 and 2. Weinheim: Verlag Chemie 1994 (in particular chapters 1 by Porter, G. chapter 2 by Zewail, A.H. chapter 26 by Krause, J.L., Whitnell, R.M., Wilson K.R. and Yan, Y. as well as chapter 27 [11])

  50. Quack, M.: J. Chem. Phys.69, 1282 (1978)

    Google Scholar 

  51. Quack, M.: Adv. Chem. Phys.50, 395 (1982)

    Google Scholar 

  52. Quack, M., Sutcliffe, E.: URIMIR: Programs for the calculation of the quantum dynamics of IR multiphoton excitation and dissociation (unimolecular reactions induced by monochromatic infrared radiation), Quantum Chemistry Program Exchange, Program 515. QCPE Bull. 6, 98 (1986); Marquardt, R., Quack, M., Stohner, J.: to be published

  53. Luckhaus, D., Quack, M.: Chem. Phys. Lett.190, 581 (1992)

    Google Scholar 

  54. Kiefer, W., Ganz, M., Vogt, P., Schmitt, M.: J. Mol. Struct.347, 229 (1995)

    Google Scholar 

  55. Bixon, M., Jortner, J.: J. Chem. Phys.48, 715 (1968)

    Google Scholar 

  56. Quack, M.: J. Chem. Soc. Faraday Disc.99, 393 (1994)

    Google Scholar 

  57. Quack, M.: Phil. Trans. Roy. Soc. London A332, 203 (1990)

    Google Scholar 

  58. Shi, S., Rabitz, H.: Chem. Phys.139, 185 (1989)

    Google Scholar 

  59. Quack, M.: Infrared Phys. Technol.36, 365 (1995); ibid.29, 441 (1989)

    Google Scholar 

  60. Groß, H., Grassi, G., Quack, M.: to be published

  61. Quack, M., Kutzelnigg, W.: Ber. Bunsenges. Phys. Chem.99, 231 (1995)

    Google Scholar 

  62. Quack, M.: Ann. Rev. Phys. Chem.41, 839 (1990)

    Google Scholar 

  63. Beil, A., Luckhaus, D., Marquardt, R., Quack, M.: J. Chem. Soc. Faraday Disc.99, 49 (1994)

    Google Scholar 

  64. Duschinsky, F.: Acta Physicochim. URSSVII, 551 (1937)

    Google Scholar 

  65. Quack, M., Suhm, M.: J. Chem. Phys.95, 28 (1991); Chem. Phys. Lett.234, 71 (1995)

    Google Scholar 

  66. Hund, F.: Die Begreifbarkeit der Natur, lecture Göttingen 1957. Reprinted in “Das Naturbild der Physik”. Haijdu, J., Lüders, G. (eds.) Göttingen 1975

Download references

Author information

Authors and Affiliations

Authors

Additional information

Motto: The Romans used to place statues of those men during their lifetime in the forum Romanum, who had served Rome in an outstanding fashion — so to speak the “Roman Nobel Prize of politics” — but not so for Cato. When Cato was asked by his friends “Why is there no statue of Cato's in the forum Romanum” his reply was: I prefer that they ask “Why is there no statue of Cato's in the forum Romanum?” than that they would ask “Why is there a statue of Cato's in the forum Romanum?”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marquardt, R., Quack, M. Radiative excitation of the harmonic oscillator with applications to stereomutation in chiral molecules. Z Phys D - Atoms, Molecules and Clusters 36, 229–237 (1996). https://doi.org/10.1007/BF01426408

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01426408

PACS

Navigation