Skip to main content
Log in

Thioredoxin and glutathione system of malaria parasitePlasmodium falciparum

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Plasmodium falciparum is the causative agent of malaria tropica. Due to the increasing resistance towards the commonly used plasmodicidal drugs there is an urgent need to identify and assess new targets for the chemotherapeutic intervention of parasite development in the human host. It is established thatP. falciparum-infected erythrocytes are vulnerable to oxidative stress, and therefore efficient antioxidative systems are required to ensure parasite development within the host cell. The thioredoxin and glutathione redox systems represent two powerful means to detoxify reactive oxygen species and this article summarizes some of the recent work which has led to a better understanding of these systems in the parasite and will help to assess them as potential targets for the development of new chemotherapeutics of malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSO:

L-buthionine-(S,R)-sulphoximdne

References

  • Arscott LD, Gromer S, Schirmer RH, Becker K, Williams CH Jr (1997) The mechanism of thioredoxin reductase from human placenta is similar to the mechanisms of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase fromEscherichia coli. Proc Natl Acad Sci USA 94: 3621–3626

    Google Scholar 

  • Atamna H, Ginsburg H (1995) Heme degradation in the presence of glutathione: a proposed mechanism to account for the high levels of non-heme iron found in the membranes of hemoglobinopathic red blood cells. J Biol Chem 270: 24876–24883

    Google Scholar 

  • — — (1997) The malaria parasite supplies glutathione to its host cell: investigation of glutathione transport and metabolism in human erythrocytes infected withPlasmodium falciparum. Eur J Biochem 250: 670–679

    Google Scholar 

  • Becker K, Christopherson RI, Cowden WB, Hunt NH, Schirmer RH (1990) Flavin analogs with antimalarial activity as glutathione reductase inhibitors. Biochem Pharmacol 39: 59–65

    Google Scholar 

  • —, Müller S, Keese MA, Walter RD, Schirmer RH (1996) A glutathione reductase-like flavoenzyme of the malaria parasitePlasmodium falciparum: structural considerations based on the DNA sequence. Biochem Soc Trans 24: 67–72

    Google Scholar 

  • Cha MK, Kim IH (1995) Thioredoxin-linked peroxidase from human red blood cell: evidence for the existence of thioredoxin and thioredoxin reductase in human red blood cell. Biochem Biophys Res Commun 217: 900–907

    Google Scholar 

  • Chae HZ, Chung SJ, Rhee SG (1994) Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem 269: 27670–27678

    Google Scholar 

  • Clark IA, Hunt NH (1983) Evidence for reactive oxygen intermediates causing hemolysis and parasite death in malaria. Infect Immun 39: 1–6

    Google Scholar 

  • Demple B (1998) A bridge to control. Science 279: 1655–1656

    Google Scholar 

  • Ding H, Demple B (1998) Thiol-mediated disassembly and reassembly of [2Fe-2S] clusters in the redox-regulated transcription factor SoxR. Biochemistry 37: 17280–17286

    Google Scholar 

  • Distefano MD, Moore MJ, Walsh CT (1990) Active site of mercuric reductase resides at the subunit interface and requires Cys135 and Cysl40 from one subunit and Cys558 and Cys559 from the adjacent subunit: evidence from in vivo and in vitro heterodimer formation. Biochemistry 29: 2703–2713

    Google Scholar 

  • Famin O, Krugliak M, Ginsburg H (1999) Kinetics of inhibition of glutathione-mediated degradation of ferriprotoporphyrin IX by antimalarial drugs. Biochem Pharmacol 58: 59–68

    Google Scholar 

  • Färber PM, Becker K, Müller S, Schirmer RH, Franklin RM (1996) Molecular cloning and characterization of a putative glutathione reductase gene, the PfGR2 gene, fromPlasmodium falciparum. Eur J Biochem 239: 655–661

    Google Scholar 

  • —, Arscott LD, Williams CH Jr, Becker K, Schirmer RH (1998) RecombinantPlasmodium falciparum glutathione reductase is inhibited by the antimalarial dye methylene blue. FEBS Lett 422: 311–314

    Google Scholar 

  • Flohe L, Hecht HJ, Steinert P (1999) Glutathione and trypanothione in parasitic hydroperoxide metabolism. Free Radic Biol Med 27: 966–984

    Google Scholar 

  • Gamain B, Langsley G, Fourmaux MN, Touzel JP, Camus D, Dive D, Slomianny C (1996) Molecular characterization of the glutathione peroxidase gene of the human malaria parasitePlasmodium falciparum. Mol Biochem Parasitol 78: 237–248

    Google Scholar 

  • Gilberger TW, Walter RD, Müller S (1997) Identification and characterization of the functional amino acids at the active-site of the large thioredoxin reductase fromPlasmodium falciparum. J Biol Chem 272: 29584–29589

    Google Scholar 

  • —, Bergmann B, Walter RD, Müller S (1998) The role of the Cterminus for catalysis of the large thioredoxin reductase fromPlasmodium falciparum. FEBS Lett 425: 407–410

    Google Scholar 

  • —, Schirmer RH, Walter RD, Müller S (2000) Deletion of the parasite specific insertions and mutation of the catalytic triad of glutathione reductase from chloroquine-sensitivePlasmodium faldparum 3D7. Mol Biochem Parasitol 107: 169–179

    Google Scholar 

  • Ginsburg H, Famin O, Zhang J, Krugliak M (1998) Inhibition of glutathione-dependent degradation of heme by chloroquine and amodiaquine as a possible basis for their antimalarial mode of action. Biochem Pharmacol 56: 1305–1313

    Google Scholar 

  • —, Ward SA, Bray PG (1999) An integrated model of chloroquine action. Parasitol Today 15: 357–360

    Google Scholar 

  • Gladyshev VN, Jeang KT, Stadtman TC (1996) Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proc Natl Acad Sci USA 93: 6146–6151

    Google Scholar 

  • Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J (1997) AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci USA 94: 3633–3638

    Google Scholar 

  • Holmgren A (1977) The function of thioredoxin and glutathione in deoxyribonucleic acid synthesis. Biochem Soc Trans 5: 611–612

    Google Scholar 

  • — (1985) Thioredoxin. Annu Rev Biochem 54: 237–271

    Google Scholar 

  • Jin DY, Chae HZ, Rhee SG, Jeang KT (1997) Regulatory role for a novel human thioredoxin peroxidase in NF-kappaB activation. J Biol Chem 272: 30952–30961

    Google Scholar 

  • Kang SW, Baines IC, Rhee SG (1998) Characterization of a mammalian peroxiredoxin that contains one conserved cysteine. J Biol Chem 273: 6303–6311

    Google Scholar 

  • Krnajski Z, Gilberger TW, Walter RD, Müller S (2000) Intersubunit interactions inPlasmodium falciparum thioredoxin reductase. J Biol Chem 275: 40874–40878

    Google Scholar 

  • —, Walter RD, Müller S (2001) Isolation and functional analysis of two thioredoxin peroxidases (peroxiredoxins) fromPlasmodium falciparum. Mol Biochem Parasitol 113: 303–308

    Google Scholar 

  • Lennon BW, Williams CH Jr (1997) Reductive half-reaction of thioredoxin reductase fromEscherichia coli. Biochemistry 36: 9464–9477

    Google Scholar 

  • Lüersen K, Walter RD, Müller S (1999) The putative γ-glutamylcysteine synthetase fromPlasmodium falciparum contains large insertions and a variable tandem repeat. Mol Biochem Parasitol 98: 131–142

    Google Scholar 

  • — — — (2000)Plasmodium falciparum-infected red blood cells depend on a functional de novo synthesis of glutathione attributable to an enhanced loss of glutathione. Biochem J 346: 545–552

    Google Scholar 

  • Lunn G, Dale GL, Beutler E (1979) Transport accounts for glutathione turnover in human erythrocytes. Blood 54: 238–244

    Google Scholar 

  • Meister A (1983) Selective modification of glutathione metabolism. Science 220: 472–477

    Google Scholar 

  • Montemartini M, Kalisz HM, Kiess M, Nogoceke E, Singh M, Steinert P, Flohe L (1998) Sequence, heterologous expression and functional characterization of a novel tryparedoxin fromCrithidia fasciculata. Biol Chem 379: 1137–1142

    Google Scholar 

  • Moore MJ, Miller SM, Walsh CT (1992) C-terminal cysteines of Tn501 mercuric ion reductase. Biochemistry 31: 677–685

    Google Scholar 

  • Müller S, Gilberger TW, Färber PM, Becker K, Schirmer RH, Walter RD (1996) Recombinant putative glutathione reductase fromPlasmodium falciparum exhibits thioredoxin reductase activity. Mol Biochem Parasitol 80: 215–219

    Google Scholar 

  • Mulrooney SB, Williams CH Jr (1997) Evidence for two conformational states of thioredoxin reductase fromEscherichia coli: use of intrinsic and extrinsic quenchers of flavin fluorescence as probes to observe domain rotation. Protein Sci 6: 2188–2195

    Google Scholar 

  • Oblong JE, Gasdaska PY, Sherrill K, Powis G (1993) Purification of human thioredoxin reductase: properties and characterzation by absorption and circular dichroism spectroscopy. Biochemistry 32: 7271–7277

    Google Scholar 

  • Reckenfelderbäumer N, Lüdemann H, Schmidt H, Steverding D, Krauth-Siegel RL (2000) Identification and functional characterization of thioredoxin fromTrypanosoma brucei brucei. J Biol Chem 275: 7547–7552

    Google Scholar 

  • Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF (2000) Pghl modulates sensitivity and resistance to multiple antimalarials inPlasmodium falciparum. Nature 403: 906–909

    Google Scholar 

  • Sanchez CP, Wunsch S, Lanzer M (1997) Identification of a chloroquine importer inPlasmodium falciparum: differences in import kinetics are genetically linked with the chloroquine-resistant phenotype. J Biol Chem 272: 2652–2658

    Google Scholar 

  • Schirmer RH, Krauth-Siegel RL, Schulz GE (1989) Glutathione reductase. In: Dolphin D, Poulson R, Avramovic O (eds) Glutathione: chemical, biochemical and medical aspects. Wiley, New York, pp 533–596

    Google Scholar 

  • —, Müller JG, Krauth-Siegel RL (1995) Disulfide reductase inhibitors as chemotherapeutic agents: the design of drugs for trypanosomiasis and malaria. Angew Chem Int Ed Engl 34: 141–154

    Google Scholar 

  • Sies H (1999) Glutathione and its role in cellular functions. Free Radic Biol Med 27: 916–921

    Google Scholar 

  • Sullivan DJ Jr, Matile H, Ridley RG, Goldberg DE (1998) A common mechanism for blockade of heme polymerization by antimalarial quinolines. J Biol Chem 273: 31103–31107

    Google Scholar 

  • Tetaud E, Fairlamb AH (1998) Cloning, expression and reconstitution of the trypanothione-dependent peroxidase system ofCrithidia fasciculata. Mol Biochem Parasitol 96: 111–123

    Google Scholar 

  • Veine DM, Ohnishi K, Williams CH Jr (1998) Thioredoxin reductase fromEscherichia coli: evidence of restriction to a single conformation upon formation of a crosslink between engineered cysteines. Protein Sci 7: 369–375

    Google Scholar 

  • Vennerstrom JL, Eaton JW (1988) Oxidants, oxidant drugs, and malaria. J Med Chem 31: 1269–1277

    Google Scholar 

  • Wang PF, Veine DM, Ahn SH, Williams CH Jr (1996) A stable mixed disulfide between thioredoxin reductase and its substrate thioredoxin: preparation and characterization. Biochemistry 35: 4812–4819

    Google Scholar 

  • —, Arscott D, Gilberger TW, Müller S, Williams CH Jr (1999) Thioredoxin reductase fromPlasmodium falciparum: evidence for the interaction between the C-terminal cysteines and the active site dithiol/disulfide. Biochemistry 38: 3187–3196

    Google Scholar 

  • Williams CH Jr (1995) Mechanism and structure of thioredoxin reductase fromEscherichia coli. FASEB J 9: 1267–1276

    Google Scholar 

  • —, Zanetti G, Arscott LD, McAllister JK (1967) Lipoamide dehydrogenase, glutathione reductase, thioredoxin reductase, and thioredoxin. J Biol Chem 242: 5226–5231

    Google Scholar 

  • Wozencraft AO (1986) Damage to malaria-infected erythrocytes following exposure to oxidant-generating systems. Parasitology 92: 559–567

    Google Scholar 

  • Wunsch S, Sanchez CP, Gekle M, Grosse-Wortmann L, Wiesner J, Lanzer M (1998) Differential stimulation of the Na+/H+ exchanger determines chloroquine uptake inPlasmodium falciparum. J Cell Biol 140: 335–345

    Google Scholar 

  • Zhang J, Krugliak M, Ginsburg H (1999) The fate of ferriprotoporphyrin IX in malaria infected erythrocytes in conjunction with the mode of action of antimalarial drugs. Mol Biochem Parasitol 99: 129–141

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, S., Gilberger, T.W., Krnajski, Z. et al. Thioredoxin and glutathione system of malaria parasitePlasmodium falciparum . Protoplasma 217, 43–49 (2001). https://doi.org/10.1007/BF01289412

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01289412

Keywords

Navigation