Skip to main content
Log in

Kinetics of thermal degradation of thiamine and surface colour in canned tuna

Kinetik des Abbaus von Thiamin und der Oberflächenfarbe von Dosenthunfisch

  • Original Paper
  • Published:
Zeitschrift für Lebensmittel-Untersuchung und Forschung Aims and scope Submit manuscript

Zusammenfassung

Die Kriterien der Wärmedegradation von Thiamin und der Oberflächenfarbe (Messung der Helligkeit mit dem Hunter-Wert L) in Konserven mit weißem Thunfisch werden mittels eines experimentellen Vorgehens von nicht-stationärem Typ bestimmt. Die kinetischen Parameter werden mit nicht-linearer, beschwerter Regression kalkuliert, wobei man einen kinetischen Koeffizienten D mit der Temperatur des Typs TDT bedenken muß. Für die Berechnung der durchschnittlichen Massenerhaltung von Thiamin benutzt man ein mathematisches Modell, das die nicht-uniforme und nichtbeständige Verteilung der Temperatur im Behälter während des Prozesses berücksichtigt. Die erhaltene starke Wechselbeziehung zwischen den vorhergesagten und den beobachteten Werten und zwischen den geringen Konfidenz-Intervallen, die für die kinetischen Parameter gefunden wurden, belegt eine hohe statistische Zuverlässigkeit. Das so bestimmte kinetische Modell erlaubt es, den Prozeß zu simulieren und zu optimieren, mit dem Ziel, die endgültige Qualität des Produktes zu verbessern.

Summary

The kinetics of thermal degradation of thiamine and surface colour (lightness measured as Hunter L-value) in canned white tuna were determined using an unsteady-state experimental procedure. Kinetic parameters were calculated by weighted non-linear regression considering a first-order kinetic model with a dependence of the kinetic coefficient (D) with temperature of the Thermal Death Time (TDT) type. Mass-average retentions of thiamine were calculated using a mathematical model which takes into account the non-uniform and unsteady distribution of temperature inside the container during thermal processing. The high correlation obtained between the predicted and the observed retention values and the small confidence intervals found for the kinetic parameters indicate a high statistical reliability. The kinetic model thus determined permits the simulation and optimization of the process resulting in a better quality of the final product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Anonymous (1992) Export directory of canned fish, seafood and salted fish. ANFACO, Vigo, Spain

  2. Vondruska JW, Otwell WS, Martin RE (1988) Food Technol 42(5):168–172

    Google Scholar 

  3. Lund DB (1988) In: Karmas E, Harris RS (eds) Nutritional evaluation of food processing, 3rd edn. AVI, New York

    Google Scholar 

  4. Labuza TP, Shapero M, Kamman J (1978) J Food Proc Preserv 2:91–99

    Google Scholar 

  5. Hill CG, Grieger-Block RA (1980) Food Technol 34(2):56–66

    Google Scholar 

  6. Saguy I, Karel M (1980) Food Technol 34(2):78–85

    Google Scholar 

  7. Lenz MK, Lund DB (1980) Food Technol 34(2):51–55

    Google Scholar 

  8. Thompson DR (1982) Food Technol 36(2):97–108

    Google Scholar 

  9. Lund DB (1983) Food Technol 37(1):92–94

    Google Scholar 

  10. Banga JR, Alonso AA, Gallardo JM, Pérez-Martín RI (1993) J Food Eng 18(4):369–387

    Google Scholar 

  11. Banga JR, Pérez-Martín RI, Gallardo JM, Casares JJ (1991) J Food Eng 14(1):25–51

    Google Scholar 

  12. Seet ST, Brown WD (1983) J Food Sci 48(1):288–289

    Google Scholar 

  13. Banga JR, Alonso AA, Gallardo JM, Pérez-Martín RI (1992) J Food Sci 57(4):913–915

    Google Scholar 

  14. Bentereud A (1977) In: Hoyem T, Kvale O (eds) Physical, chemical and biological changes in food caused by thermal processing. Applied Science Publishers, London

    Google Scholar 

  15. Greenwood DA, Kraybill HR, Feaster JF, Jackson JM (1944) Ind Eng Chem 36:922–927

    Google Scholar 

  16. Rice EE, Beuk JF (1944) Food Res 10(2):99–107

    Google Scholar 

  17. Freed M, Brenner S, Wodicka VO (1949) Food Technol 5:148–151

    Google Scholar 

  18. Farrer KTH (1955) Adv Food Res 6:257–311

    Google Scholar 

  19. Feliciotti E, Esselen WB (1957) Food Technol 2:77–84

    Google Scholar 

  20. Mulley EA, Stumbo CR, Hunting WM (1975) J Food Sci 40:993–996

    Google Scholar 

  21. Guzman-Tello R, Cheftel JC (1987) Int J Food Sci Technol 22:549–562

    Google Scholar 

  22. Fox M, Loncin M, Weiss M (1982) J Food Quality 5:161–182

    Google Scholar 

  23. Briozzo J, Basualdo RN, Carrera PA, Alzamora SM, Chirife J (1987) J Food Sci 52(3):827–829

    Google Scholar 

  24. Mauri LM, Resnik SL, Tomio JM, Chirife J (1987) Anal Assoc Quim Argent 75(1):43–54

    Google Scholar 

  25. Arabshahi A, Lund DB (1988) J Food Sci 53(1):199–201

    Google Scholar 

  26. Mauri LM, Alzamora SM, Chirife J, Tomio MJ (1989) Int J Food Sci Technol 24:1–9

    Google Scholar 

  27. Ramaswamy H, Ghazala S, van de Voort F (1990) Can Inst Food Sci Technol J 23(2):125–130

    Google Scholar 

  28. Braekkan OR (1962) In: Heen E, Kreuzer R (eds) Fish in nutrition. Fishing News

  29. Higashi H (1962) In: Heen E, Kreuzer R (eds) Fish in nutrition. Fishing News

  30. Suparno A, Rosenthal J, Hanson SW (1990) J Sci Food Agric 53:101–106

    Google Scholar 

  31. Khayat A (1973) J Food Sci 38(4):716–717

    Google Scholar 

  32. Rasekh J, Kramer A (1970) J Food Sci 35:417–423

    Google Scholar 

  33. Little AC (1969) Food Technol 23:1301–1304

    Google Scholar 

  34. Francis FJ, Clydesdale FM (1975) Food colorimetry: theory and applications. AVI

  35. Ohlsson T (1980) J Food Sci 45:836–848

    Google Scholar 

  36. Rao MA, Lee CY, Katz J, Cooley HJ (1981) J Food Sci 46:636–637

    Google Scholar 

  37. Ghazala S, Ramaswamy HS, van de Voort FR, Prasher SO, Barrington S (1989) Can Inst Food Sci Technol J 22(5):475–480

    Google Scholar 

  38. Pérez-Martín RI, Banga JR, Sotelo MC, Aubourg S, Gallardo JM (1989) J Food Eng 10:83–95

    Google Scholar 

  39. Arabshahi A (1982) Ph. D. Thesis, Univ. of Wisconsin-Madison

  40. Banga JR, Casares JJ (1987) IChemE Symp Ser 100, 183–192

  41. Bevington PR (1969) Data reduction and error analysis for the physical sciences. McGraw-Hill, New York

    Google Scholar 

  42. Efron B, Tibshirani R (1986) Stat Sci 1(1):54–74

    Google Scholar 

  43. Nasri H, Simpson R, Bouzas J, Torres JA (1992) J Food Eng (submitted)

  44. Wills RBH, Wimalasiri P, Greenfield H (1985) J Micronutr Anal 1:23–29

    Google Scholar 

  45. Polesello A, Rizzolo A (1986) J Micronutr Anal 2:153–158

    Google Scholar 

  46. Hasselmann C, Franck D, Grimm P, Diop PA, Soules C (1989) J Micronutr Anal 5:269–279

    Google Scholar 

  47. Fellman JK, Artz WE, Tassinari PD, Cole CL, Augustin J (1982) J Food Sci 47:2048–2050

    Google Scholar 

  48. AOAC (1990) Official methods of analysis, 15th edn. Kenneth Helrich, Arlington, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banga, J.R., Alonso, A.A., Gallardo, J.M. et al. Kinetics of thermal degradation of thiamine and surface colour in canned tuna. Z Lebensm Unters Forch 197, 127–131 (1993). https://doi.org/10.1007/BF01260307

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01260307

Keywords

Navigation