Skip to main content
Log in

Eigenvalue inequalities for fermions in gauge theories

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that QCD with a sufficient number of fermions of zero bare mass has physical massless particles. That result also follows from triangle anomalies, so only our method is novel. Our method involves proving special cases of recently conjectured paramagnetic inequalities for fermions. The proofs are simple applications of the Atiyah-Patodi-Singer theorem on spectral flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tomboulis, E.T.: Permanent confinement in four-dimensional non-abelian lattice gauge theory. Phys. Rev. Lett.50, 88 (1983)

    Google Scholar 

  2. Weingarten, D.: Mass inequalities for quantum chromodynamics. Phys. Rev. Lett.51, 1830 (1983)

    Google Scholar 

  3. Vafa, C., Witten, E.: Restrictions on symmetry breaking in vector-like gauge theories. Nucl. Phys. B234, 173 (1984)

    Google Scholar 

  4. Witten, E.: Some inequalities among hadron masses. Phys. Rev. Lett.51, 2351 (1983)

    Google Scholar 

  5. Nussinov, S.: Baryon-meson mass inequality. Phys. Rev. Lett.51, 1081 (1983); Mass inequalities in quantum chromodynamics52, 966 (1984)

    Google Scholar 

  6. Tomboulis, E.T., Yaffe, L.: Princeton preprint (1983)

  7. Hogreve, H., Schrader, R., Seiler, R.: A conjecture on the spinor functional determinant. Nucl. Phys. B142, 525 (1978);

    Google Scholar 

  8. Brydges, D., Fröhlich, J., Seiler, E.: On the construction of quantized gauge fields. I. General results. Ann. Phys.121, 227 (1979);

    Google Scholar 

  9. Avron, J., Simon, B.: A counterexample to the paramagnetic conjecture. Phys. Lett.75A, 41 (1979)

    Google Scholar 

  10. 't Hooft, G.: In: Recent developments in gauge theories, 't Hooft, G. et al. (eds.). New York: Plenum Press 1980

    Google Scholar 

  11. Asorey, M., Mitter, P.K.: Regularized, continuum Yang-Mills process and Feynman-Kac functional integral. Commun. Math. Phys.80, 43 (1981)

    Google Scholar 

  12. Banks, T., Casher, A.: Chiral symmetry breaking in confining theories. Nucl. Phys. B169, 102 (1980)

    Google Scholar 

  13. Kogut, J., Stone, M., Wyld, H.W., Gibbs, W.R., Shigemitsu, J., Shenker, S.H., Sinclair, D.K.: Deconfinement and chiral symmetry restoration at finite temperature in SU(2) and SU(3) gauge theories. Phys. Rev. Lett.50, 393 (1983);

    Google Scholar 

  14. Scales of chiral symmetry breaking in quantum chromodynamics. Phys. Rev. Lett.48, 1140 (1982)

  15. Atiyah, M.F., Patodi, V., Singer, I.: Math. Proc. Camb. Philos. Soc.79, 71 (1976)

    Google Scholar 

  16. Callan, C.G., Dashen, R., Gross, D.J.: Toward a theory of the strong interactions. Phys. Rev. D17, 2717 (1978)

    Google Scholar 

  17. Kiskis, J.: Fermion zero modes and level crossing. Phys. Rev.D18, 3690 (1978)

    Google Scholar 

  18. Atiyah, M.F., Singer, I.M.: Ann. Math.87, 485, 546, (1968);93, 1, 119, 139 (1971)

    Google Scholar 

  19. Atiyah, M.F., Segal, G.B.: Ann. Math.87, 531 (1968)

    Google Scholar 

  20. Gromov, M., Lawson, H.B., Jr.: Ann. Math.111, 209 (1980)

    Google Scholar 

  21. Witten, E.: J. Diff. Geom.17, 661 (1982); Alvarez-Gaumé, L., Ginsparg, P.: The topological meaning of non-Abelian anomalies. Harvard preprint (1983)

    Google Scholar 

  22. Kato, T.: Israel J. Math.13, 135 (1972)

    Google Scholar 

  23. Feynman, R.P.: The qualitative behavior of Yang-Mills theory in 2+1 dimensions. Nucl. Phys. B188, 479 (1981)

    Google Scholar 

  24. Singer, I.M.: Phys. Scripta24, 817 (1981)

    Google Scholar 

  25. Jackiw, R., Templeton, S.: How super-renormalizable interactions cure their infrared divergences. Phys. Rev. D23, 2291 (1981)

    Google Scholar 

  26. Schönfeld, J.: A mass term for three-dimensional gauge fields. Nucl. Phys. B185, 157 (1981); Deser, S., Jackiw, R., Templeton, S.: Three-dimensional massive gauge theories. Phys. Rev. Lett.48, 975 (1982); Topologically massive gauge theories, Ann. Phys. (N.Y.)140, 372 (1982)

    Google Scholar 

  27. Appelquist, T., Pisarski, R.D.: High-temperature Yang-Mills theories and three-dimensional quantum chromodynamics. Phys. Rev. D23, 2305 (1981)

    Google Scholar 

  28. Affleck, I., Harvey, J., Witten, E.: Instantions and (super-)symmetry breaking In (2+1) dimensions. Nucl. Phys. B206, 413 (1982)

    Google Scholar 

  29. Redlich, N.: Gauge noninvariance and parity nonconservation of three-dimensional fermions, Phys. Rev. Lett.52, 18 (1984)

    Google Scholar 

  30. Alvarez-Gaumé, L., Witten, E.: Gravitational anomalics, Nucl. Phys. B234, 269 (1984)

    Google Scholar 

  31. Pisarski, R.D.: University of California preprint (1984)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Supported in part by the National Science Foundation Grant No. PHY80-19754

Supported in part by DOE Grant No. DE-AC02-76ER02220

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vafa, C., Witten, E. Eigenvalue inequalities for fermions in gauge theories. Commun.Math. Phys. 95, 257–276 (1984). https://doi.org/10.1007/BF01212397

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01212397

Keywords

Navigation