Skip to main content
Log in

Comparative analysis of p53 and c-myc expression and cell proliferation in human hepatocellular carcinomas-an enhanced immunohistochemical approach

  • Original Papers
  • Clinical Oncology
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Expression of p53 and c-myc was investigated and compared with cell proliferative activity in a series of 40 hepatocellular carcinomas (HCC), by means of enhanced immunohistochemistry. p53 expression was demonstrated in 5 out of 40 HCC (12.5%) with the incidence increasing in proportion to the histological grading of malignancy: thus, 0% of well-differentiated, 6.9% of moderately differentiated and 33.3% of poorly differentiated lesions were positive. The proliferating-cell nuclear antigen (PCNA) labeling index also showed a statistically significant increase with this grading. Distribution patterns of PCNA-positive cell were divided into four types: scatter, marginal, mosaic and diffuse. Four HCC cases, predominantly of the poorly differentiated type, exhibited the diffuse pattern. Generally, p53 overexpression corresponded well with PCNA positivity. In contrast, there was no correlation between c-myc overexpression, found in 19 out of 40 HCC (47.5%), and histological grading of HCC or PCNA labeling index. The distribution pattern of c-myc-positive HCC cells was also different from that of PCNA and p53. Our results suggest that p53 overexpression closely relates to proliferation of HCC cells. Furthermore, there may be a consistent difference in regulatory mechanisms between p53 and c-myc expression in multistep hepatocarcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcorn JA, Feitelberg SP, Brenner DA (1990) Transient induction of c-jun during hepatic regeneration. Hepatology 11:909–915

    PubMed  Google Scholar 

  • Berg FMVD, Tigges AJ, Schipper MEI, Hartog-Jager FCAD, Kroes WGM, Walboomers JMM (1989) Expression of the nuclear oncogene p53 in colon tumours. J Pathol 157:193–199

    PubMed  Google Scholar 

  • Blanquest V, Garreau F, Chenivesse X, Brechot C, Turleau C (1988) Regional mapping to 4q32.1 by in situ hybridization of a DNA domain rearannged in human liver cancer. Hum Genet 80:274–276

    PubMed  Google Scholar 

  • Bravo R, Frank R, Blundell PA, Mac Donald-Bravo H (1987) Cyclin/PCNA is the auxiliary protein of DNA polymerase delta. Nature 326:515–517

    PubMed  Google Scholar 

  • Bressac B, Galvin KM, Liang TJ, Isselbacher KJ, Wands JR, Ozturk M (1990) Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proc Natl Acad Sci USA 87:1973–1977

    PubMed  Google Scholar 

  • Buetow KH, Murray JC, Israel JL, London WT, Smith M, Kew M, Blanquest V, Brechot C, Redeccker A, Govindarajah S (1989) Loss of heterozygosity suggests tumor suppressor gene responsible for primary hepatocellular carcinoma. Proc Natl Acad Sci USA 86:8852–8855

    PubMed  Google Scholar 

  • Celis JE, Celis A (1985) Cell cycle-dependent variations in the distribution of the nuclear protein cyclin proliferating cell nuclear antigen in cultured cells: subdivision of S phase. Proc Natl Acad Sci USA 82:3262–3266

    PubMed  Google Scholar 

  • Cowley B, Smardo FL, Grantham H, Calvet JP (1987) Elevated c-myc protooncogene expression in autosomal recessive polycystic kidney disease. Proc Natl Acad Sci USA 84:8394–8398

    PubMed  Google Scholar 

  • Davidoff AM, Kerns B-JM, Iglehart D, Marks JR (1991) Maintenace of p53 alterations throughout breast cancer progression. Cancer Res 51:2605–2610

    PubMed  Google Scholar 

  • Farmer G, Bargonetti J, Zhu H, Friedman P, Prywes R, Prives C (1992) Wild-type p53 activates transcription in vitro. Nature 358:83–86

    PubMed  Google Scholar 

  • Fields S, Jang SK (1990) Presence of a potent transcription activating sequence in the p53 protein. Science 249:1046–1049

    PubMed  Google Scholar 

  • Finlay CA, Hinds PW, Levine AJ (1989a) The p53 proto-oncogene can act as a suppressor of transformation. Cell 57:1083–1093

    PubMed  Google Scholar 

  • Finlay CA, Hinds PW, Tan T-H, Eliyahu D, Oren M, Levine AJ (1988b) Activating mutations for transformation by p53 produce a gene product that forms an hsc 70-p53 complex with an altered half-life. Mol Cell Biol 8:531–539

    PubMed  Google Scholar 

  • Ginsberg D, Mechta F, Yaniv M, Oren M (1991) Wild-type p53 can down-modulate the activity of various promoters. Proc Natl Acad Sci USA 88:9979–9983

    PubMed  Google Scholar 

  • Hall PA, Levison DA, Woods AL, Yo CC-W, Kellock DB, Watkins JA, Barnes DM, Gillett CE, Camplejohn R, Dover R, Wassem NH, Lane DP (1990) Proliferating cell nuclear antigen (PCNA) immunolocalization in paraffin sections: an index of cell proliferation with evidence of deregulated expression in some neoplasms. J Pathol 162:285–294

    PubMed  Google Scholar 

  • Himeno Y, Fukuda Y, Hatanaka M, Imura H (1988) Expression of oncogenes in human liver disease. Liver 8:208–212

    PubMed  Google Scholar 

  • Hsu IC, Metcalf RA, Sun I, Welsh JA, Wang NJ, Harris CC (1991) Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature 350:427–428

    PubMed  Google Scholar 

  • Huber BE, Heilman CA, Thorgeirsson SS (1989) Poly (A+)RNA levels of growth-, differentiation- and transformation-associated genes in the progressive development of hepatocellular carcinoma in the rat. Hepatology 9:756–762

    PubMed  Google Scholar 

  • Hunt T (1991) Cooperation between oncogenes. Cell 64:249–270

    PubMed  Google Scholar 

  • Iwanaga T, Fujita T, Tsuchihashi T, Yamaguchi K, Abe K, Yanaihara N (1986) Immunohistochemical detection of the c-myc oncogene product in human fetuses. Biomed Res 7:365–367

    Google Scholar 

  • Jones DJ, Ghosh AK, Moore M, Schofield PF (1987) A critical appraisal of the immunohistochemical detection of the c-myc oncogene product in colorectal cancer. Br J Cancer 56:779–783

    PubMed  Google Scholar 

  • Kawasaki Y, Monden T, Morimoto H, Murotani M, Miyoshi Y, Kobayashi T, Shimano T, Mori T (1992) Immunohistochemical study of p53 expression in microwave-fixed. paraffin-embedded sections of colorectal carcinoma and adenoma. Am J Clin Pathol 97:244–249

    PubMed  Google Scholar 

  • Kelly K, Cochran BH, Stiles CD, Leder P (1983) Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35:603–610

    PubMed  Google Scholar 

  • Leder P, Battey J, Lenoir G, Moulding C, Murphy W, Potter H, Stewart T, Taub R (1983) Translocation among antibody genes in human cancer. Science 222:765–771

    PubMed  Google Scholar 

  • Loke S-L, Neckers LM, Schwab G, Jaffe ES (1988) c-myc protein in normal tissuc. Effects of fixation on its apparent subcellular distribution. Am J Pathol 131:29–37

    PubMed  Google Scholar 

  • Mathews MB, Bernstein RM, Franza BR, Garrels JI (1984) Identity of the proliferating cell nuclear antigen and cyclin. Nature 303:374–376

    Google Scholar 

  • Makino R, Hayashi K, Sugimura T (1984a) c-myc transcript is induced in rat liver at a very early stage of regeneration or by cyclohexamide treatment. Nature 310:697–698

    PubMed  Google Scholar 

  • Makino R, Hayashi K, Sato S, Sugimura T (1984b) Expressions of the c-HA-ras and c-myc genes in rat liver tumors. Biochem Biophys Res Commun 119:1096–1102

    Google Scholar 

  • Marshall CJ (1991) Tumor suppressor genes. Cell 64:313–326

    PubMed  Google Scholar 

  • Mercer WE, Shields MT, Lin D, Appella E, Ullrich SJ (1991) Growth suppression induced by wild-type p53 protein is accompanied by selective down-regulation of proliferating-cell nuclear antigen expression. Proc Natl Acad Sci USA 88:1958–1962

    PubMed  Google Scholar 

  • Miller C, Mohandas T, Wolf D, Prokocimer M, Rotter V, Koeffler HP (1986) Human p53 gene localized to short arm of chromosome 17. Nature 319:783–784

    PubMed  Google Scholar 

  • Mizukami Y, Nonomura A, Hashimoto T, Michigishi T, Noguchi M, Matsubara F, Yanaihara N (1991) Immunohistochemical demonstration of epidermal growth factor and c-myc oncogene product in normal, benign and malignant thyroid tissues. Histopathology 18:11–18

    PubMed  Google Scholar 

  • Murakami Y, Hayashi K, Hirohashi S, Sekiya T (1991) Aberrations of tumor suppressor p53 and retinoblastoma genes in human hepatocellular carcinoma. Cancer Res 51:5520–5525

    PubMed  Google Scholar 

  • Nagy P, Evarts RP, Marsden E, Roach J, Thorgeirsson SS (1988) Cellular distribution of c-myc transcripts during chemical hepatocarcinogenesis in rats. Cancer Res 48:5522–5527

    PubMed  Google Scholar 

  • Okuda K (1992) Hepatocellular carcinoma: recent progress. Hepatology 15:948–963

    PubMed  Google Scholar 

  • Porter PL, Gown AM, Kramp SG, Coltrera MD (1992) Widespread p53 overexpression in human malignant tumors. Am J Pathol 140:145–151

    PubMed  Google Scholar 

  • Sano T, Tsujino T, Yoshida K, Nakayama H, Haruma K, Ito H, Nakamura Y, Kajiyama G, Tahara E (1991) Frequent loss of heterozygosity on chromosomes lq, 5q, and 17p in human gastric carcinoma. Cancer Res 51:2926–2931

    PubMed  Google Scholar 

  • Sasano H, Nagura H, Silverberg SG (1992) Immunolocalization of c-myc onocoprotein in mucinous and serous adenocarcinomas of the ovary. Hum Pathol 23:491–495

    PubMed  Google Scholar 

  • Sato Y, Mukai K, Watanabe S, Gotoh M, Shimosato Y (1986) The AMeX method. A simplified technique to tissue processing and paraffin embedding with improved preservation of antigens for immunostaining. Am J Pathol 125:431–435

    PubMed  Google Scholar 

  • Shi S-R, Key ME, Kalra KL (1991) Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. J Histochem Cytochem 39:741–748

    PubMed  Google Scholar 

  • Shirasawa S, Urabe K, Yanagawa Y, Toshitani K, Iwama T, Sasazuki T (1991) p53 gene mutations in colorectal tumors from patients with familial polyposis coli. Cancer Res 51:2874–2878

    PubMed  Google Scholar 

  • Slamon DJ, Dekemion JB, Verma IM, Cline MJ (1984) Expression of cellular oncogenes in human malignancies. Science 224:256–264

    PubMed  Google Scholar 

  • Stewart J, Evan G, Watson J, Sikora K (1986) Detection of the c-myc oncogene product in colonic polyps and carcinoma. Br J Cancer 53:1–6

    PubMed  Google Scholar 

  • Tulchin N, Ornstein L, Harpaz N, Guillem J, Borner C, O'Toole K (1992) c-myc protein distribution. Neoplastic tissue of the human colon. Am J Pathol 140:719–729

    PubMed  Google Scholar 

  • Williams ARW, Piris J, Wyllie AH (1990) Immunohistochemical demonstration of altered intracellular localization of th c-myc oncogene product in human colorectal neoplasms. J Pathol 160:287–293

    PubMed  Google Scholar 

  • Zhang W, Hirohasi S, Tusda H, Shimosato Y, Yokoya J, Terada M, Sugimura T (1990) Frequent loss of heterozygosity on chromosomes 16 and 4 in human hepatocellular carcinoma. Jpn J Cancer Res 81:108–111

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saegusa, M., Takano, Y., Kishimoto, H. et al. Comparative analysis of p53 and c-myc expression and cell proliferation in human hepatocellular carcinomas-an enhanced immunohistochemical approach. J Cancer Res Clin Oncol 119, 737–744 (1993). https://doi.org/10.1007/BF01195346

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01195346

Key words

Navigation