Skip to main content
Log in

Structural mechanics of carbon nanotubes: From continuum elasticity to atomistic fracture

  • Published:
Journal of Computer-Aided Materials Design

Summary

Motivated by recent observations of bent, collapsed and twisted carbon nanotubes, we investigate their behavior at large deformations. These hollow molecules behave remarkably similar to their macroscopic homologs. They reversibly switch into different morphological patterns, and each shape change corresponds to an abrupt release of energy and a singularity in the stress-strain curve. These transformations, simulated using a realistic many-body potential, are accurately described by a continuum-shell model. In contrast, a response to axial tension proceeds smoothly up to a fracture threshold, beyond which a monoatomic carbon chain unravels between the tube fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones, D., New Scientist, 32 (1966) 245.

    Google Scholar 

  2. Jones, D., The Inventions of Daedalus, Freeman, Oxford, U.K., 1982.

    Google Scholar 

  3. Kroto, H., Heath, J., O'Brien, S., Curl, R. and Smalley, R., Nature, 318 (1985) 162.

    Google Scholar 

  4. Krätschmer, W., Lamb, L., Fostiropoulos, K. and Huffman, D., Nature, 347 (1990) 354.

    Google Scholar 

  5. Iijima, S., Nature, 354 (1991) 56.

    Google Scholar 

  6. Kroto, H., Rao, C.N.R. and Osawa, E. (Eds.) Mater. Res. Soc. Bull. 19, No. 11, special issue, 1994.

  7. Ruoff, R. et al., Nature, 364 (1993) 514.

    Google Scholar 

  8. Despres, J., Daguerre, E. and Lafdi, K., Carbon, 33 (1995) 87.

    Google Scholar 

  9. Iijima, S., Brabec, C.J., Maiti, A. and Bernholc, J., J. Chem. Phys., 104 (1996) 2089.

    Google Scholar 

  10. Chopra, N., Benedict, L., Crespi, V., Cohen, M., Louie, S. and Zettl, A., Nature, 377 (1995) 135.

    Google Scholar 

  11. Ruoff, R. and Lorents, D., Bull. Am. Phys. Soc., 40 (1995) 173.

    Google Scholar 

  12. Kelly, B., Physics of Graphite, Appl. Sci., London, U.K., 1981.

    Google Scholar 

  13. Dresselhaus, M., Dresselhaus, G., Sugihara, K., Spain, I. and Goldberg, H., Graphite Fibers and Filaments, Springer, Berlin, Germany, 1988.

    Google Scholar 

  14. Yakobson, B.I., Brabec, C.J. and Bernholc, J., Phys. Rev. Lett., 76 (1996) 2511.

    PubMed  Google Scholar 

  15. Yakobson, B.I., Brabec, C.J. and Bernhole, J., Bull. Am. Phys. Soc., 40 (1995) 419.

    Google Scholar 

  16. Tersoff, J., Phys. Rev., B37 (1988) 6991.

    Google Scholar 

  17. Brenner, D.W., Phys. Rev., B42 (1990) 9458.

    Google Scholar 

  18. Landau, L.D. and Lifshitz, E.M., Elasticity Theory, Pergamon, Oxford, U.K., 1986.

    Google Scholar 

  19. Allen, H. and Bulson, E., Background to Buckling, McGraw-Hill, London, U.K., 1980.

    Google Scholar 

  20. Timoshenko, S. and Gere, J., Theory of Elastic Stability, McGraw-Hill, New York, NY, 1988.

    Google Scholar 

  21. Feynman, R., Leyton, R. and Sands, M., The Feynman Lectures in Physics, Vol., 2, Addison-Wesley, Reading, MA, 1964.

    Google Scholar 

  22. Bhushan, B., Israelashvili, J.N. and Landman, U., Nature, 374 (1995) 607.

    Google Scholar 

  23. Adams, G., Sankey, O., Page, J., O'Keeffe, M. and Drabold, D., Science, 256 (1992) 1792.

    Google Scholar 

  24. Lucas, A., Lambin, P. and Smalley, R., J. Phys. Chem. Sol., 54 (1993) 587.

    Google Scholar 

  25. Robertson, D., Brenner, D. and Mintmire, J., Phys. Rev., B45 (1992) 12592.

    Google Scholar 

  26. Blase, X., Rubio, A., Loui, S.G. and Cohen, M.L., Europhys. Lett., 28 (1994) 335.

    Google Scholar 

  27. Overney, G., Zhong, W. and Tomanek, D., Z. Phys., D27 (1993) 93.

    Google Scholar 

  28. Palmer, A. and Martin, J., Nature, 254 (1975) 46.

    Google Scholar 

  29. Kyriakides, S. and Babcock, C.D., In Thompson, J.M.T. and Hunt, G.W. (Eds.) Collapse: The Buckling of Structures in Theory and Practice, Cambridge University, Cambridge, U.K., 1983, pp. 75–91.

    Google Scholar 

  30. Rinzler, A., Hafner, J., Nikolaev, E., Lou, L., Kim, S., Tomanek, D., Norlander, P., Colbert, D. and Smalley, R., Science, 269 (1995) 1550.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakobson, B.I., Brabec, C.J. & Bernholc, J. Structural mechanics of carbon nanotubes: From continuum elasticity to atomistic fracture. J Computer-Aided Mater Des 3, 173–182 (1996). https://doi.org/10.1007/BF01185652

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01185652

Keywords

Navigation