Skip to main content
Log in

Development of anodes for aluminium/air batteries — solution phase inhibition of corrosion

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The discharge characteristics of aluminium in inhibited and uninhibited 4 M KOH at 50°C have been explored. The performance of pure aluminium as a fuel is compared with that for two leading alloy fuels that had been evaluated in our previous work, Alloy BDW (Al−1Mg−0.1In−0.2Mn) and Alloy 21 (Al−0.2Ga−0.1In−0.1Tl). The inhibitors employed in this study, SnO 2−3 , In(OH)3, BiO 3−3 , Ga(OH) 4 , MnO 2−4 , and binary combinations thereof, are either present in Alloys BDW and 21 or have been investigated previously (SnO 2−3 ). We found that potassium manganate (K2MnO4) and Na2SnO3+In(OH)3 are effective inhibitor systems, particularly at high discharge rates (400 mA cm−2), but at low discharge rates only manganate offers a significant advantage in coulombic efficiency over the uninhibited solution. Alloy BDW exhibits a very low open circuit (standby) corrosion rate, but its coulombic efficiency under discharge, as determined by delineating the partial anodic and cathodic reactions, was found to be no better than that of aluminium in the same uninhibited solution. Alloy 21 was found to exhibit a comparable performance to Alloy BDW under open circuit conditions and a much higher coulombic efficiency at low discharge rates (100 mA cm−2), but the performance of this alloy under high discharge rate conditions was not determined. Alloy 21 has the significant disadvantage that it contains thallium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Cooper, R. V. Homsky and J. H. Landrum, ‘The aluminum-air battery for electric vehicle propulsion’, inProceedings of the 15th Intersociety Energy Conversion Engineering Conference, June 1980, Lawrence Livermore National Laboratory UCRL-8443, Livermore, California (1980).

  2. J. F. Cooper, R. V. Homsy, J. H. Landrum and S. P. Perone, ‘The mechanically-refuelable aluminum-air battery’, inibid. Proceedings of the 15th Intersociety Energy Conversion Engineering Conference, June 1980, Lawrence Livermore National Laboratory UCRL-8443, Livermore, California (1980).

  3. S. P. Perone, N. Kirkman Bey and J. F. Cooper, ‘Parametric study of an alkaline-electrolyte aluminum-air flow cell’, inibid. Proceedings of the 15th Intersociety Energy Conversion Engineering Conference, June 1980, Lawrence Livermore National Laboratory UCRL-8443, Livermore, California (1980).

  4. J. D. Salisbury, E. Behrin, M. K. Kong and D. J. Whisler, ‘A Comparative Analysis of Aluminum-Air Battery Propulsion Systems for Passenger Vehicles’, Lawrence Livermore National Laboratory, UCRL-52933, Livermore, California (1980).

    Google Scholar 

  5. ‘Aluminum-Air Battery System, Assessment of Technical and Market Viability for Electric Vehicle Application’, Final Report to Brookhaven National Laboratory, Alvin J. Salkind Associates (1980).

  6. ‘Control System Considerations for an Aluminium-Air Battery Powered Electric Vehicle’, Final Report to Lawrence Livermore National Laboratory, William M. Brobeck and Associates (1980).

  7. A. R. Despic,Recueil Des Travaux 12 (1979) 1.

    Google Scholar 

  8. H. B. Urgach and M. C. Cervi, ‘Aluminum-based anodes for underwater fuel cells’,Proceedings of the 12th Intersociety Energy Conversion Engineering Conference No. 1 (1977) p. 276.

  9. W. A. Bryant and E. S. Buzzelli, ‘A comparison of metal-air batteries for electric vehicle propulsion’, inProceedings of the 14th Intersociety Energy Conversion Engineering Conference, No. 1, (1979) pp. 651–653.

  10. J. F. Cooper, ‘Preliminary Design and Analysis of Aluminum-Air Cells Providing for Continuous Feed and Full Utilization of Anodes’, DoE Report, UCID0-19178, Order No. DE81030479 (1981) p. 9.

  11. R. V. Homsy, ‘Rapidly-Refuelable 167 cm2 Aluminum-Air Power Cell’, DoE Report, UCID-19244, Order No. DE82006251 (1981) p. 44.

  12. O. R. Brown and J. S. Whitley,Electrochim. Acta 32 (1987) 545.

    Google Scholar 

  13. Y. Hori, J. Takaom and H. Shomon,30 (1985) 1121.

    Google Scholar 

  14. F. Dalard, J. Y. Macht, J. Guilton and J. C. Sohm,21 (1976) 249.

    Google Scholar 

  15. W. Bohnstedt,J. Power Sources 5 (1980) 245.

    Google Scholar 

  16. W. Schneider and K. Wiesner,Bull. Chem. Soc. Beeg. 48 (1983) 5241.

    Google Scholar 

  17. C. J. McMinn and J. A. Branscomb, ‘Production of Anodes for Aluminum-Air Power Cells Directly from Hall Cell Metal’, Report to DoE, Subcontract No. 6124909 (1981).

  18. A. R. Despic, D. M. Drazic, M. M. Purenovic and N. Cikovic,J. Appl. Electrochem. 6 (1976) 527.

    Google Scholar 

  19. J. R. Moden and G. Perkons, US Patent No. 4,150,104 (1979).

  20. A. R. Despic, D. M. Drazic, M. M. Purenovic and N. Cikovic,J. Appl. Electrochem. 6 (1976) 527.

    Google Scholar 

  21. S. Zecevic, L. Gajic, A. R. Despic and D. M. Drazic,Electrochim. Acta 26 (1981) 1625.

    Google Scholar 

  22. D. D. Macdonald, K. H. Lee, A. Moccari and D. Harrington,Corrosion 44 (1988) 652.

    Google Scholar 

  23. S. Real, M. Urquidi-Macdonald and D. D. Macdonald,J. Electrochem. Soc. 135 (1988) 2397.

    Google Scholar 

  24. 135 (1988) 1633.

    Google Scholar 

  25. D. D. Macdonald, S. Real, S. I. Smedley, and M. Urquidi-Macdonald,135 (1988) 2410.

    Google Scholar 

  26. Idem D. D. Macdonald, S. Real, S. I. Smedley, and M. Urquidi-Macdonald, ‘Development and Evaluation of Anode Alloys for Aluminum-Air Batteries’, Final Report to Eltech Systems Corp., DoE Subcontract 100484-MLM (1987).

  27. M. Urquidi-Macdonald, S. Real and D. D. Macdonald,J. Electrochem. Soc. 133 (1986) 2018.

    Google Scholar 

  28. B. G. Pound, R. P. Singh and D. D. Macdonald,J. Power Sources 18 (1986) 1.

    Google Scholar 

  29. K. A. Jensen and W. Klemm,Z. Anorg. Allg. Chem. 237 (1938) 47.

    Google Scholar 

  30. M. C. H. McKubre and D. D. Macdonald,J. Electrochem. Soc. 127 (1980) 632.

    Google Scholar 

  31. K. E. Heusler and W. Allgaier,Werkst. Korros. 22 (1971) 297.

    Google Scholar 

  32. O. R. Brown and J. S. Whitley,Electrochim. Acta 32 (1987) 545.

    Google Scholar 

  33. R. Greef and C. F. W. Norman,J. Electrochem. Soc. 132 (1985) 2362.

    Google Scholar 

  34. Eltech Systems Corp., private communication (1987).

  35. D. D. Macdonald, K-H. Lee, A. Moccari, D. Harrington and M. Urquidi, ‘The Metallurgy and Electrochemistry of the Aluminum Anode’, Final Report to ELTECH Systems Corp. from Ohio State University, FCC 5162 (1984).

  36. M. Pourbaix, ‘Atlas of Electrochemical Equilibria’, National Association of Corrosion Engineers Eng., Houston, TX (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macdonald, D.D., English, C. Development of anodes for aluminium/air batteries — solution phase inhibition of corrosion. J Appl Electrochem 20, 405–417 (1990). https://doi.org/10.1007/BF01076049

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01076049

Keywords

Navigation