Skip to main content
Log in

Amiodarone pharmacokinetics. I. Acute dose-dependent disposition studies in rats

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Single intravenous bolus doses of amiodarone hydrochloride of 30, 60, 90 and 120 mg/kg were administered to male Sprague-Dawley rats to determine the effects of dose on amiodarone pharmacokinetics. Serial blood samples and total urine were collected over 48 hr and assayed for amiodarone and desethylamiodarone by HPLC. The blood amiodarone concentration-time curves for the four doses were best described by a triexponential equation with terminal half-lives (t 1/2γ ) ranging from 17 to 20 hr. Over the dose range studied, no changes in γ, t 1/2γ , or central compartment volume (Vc=1.2–1.4 L/kg) were observed. On the other hand, reductions in amiodarone clearance (CL and steady-state volume of distribution (V ss of 44% (17.7 to 10.0 ml/min per kg) and 50% (16.4 to 8.2 L/kg), respectively, were noted as the dose of amiodarone increased. The conversion of amiodarone to desethylamiodarone (fm was dose-independent and amounted to approximately 10% of each amiodarone dose. No amiodarone or desethylamiodarone was detected in the urine of any of the treated animals. The blood-to-plasma concentration ratio of amiodarone was concentration-independent and therefore did not account for the dose-dependent changes in Vss and CL observed. The data suggested that the dose-dependent changes noted were due to an alteration in the volume (s) of the peripheral tissue compartment(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. Rosenbaum, P. A. Chiale, D. Ryba, and M. V. Elizari. Control of tachyarrhythmias associated with Wolff-Parkinson-White Syndrome by amiodarone hydrochloride.Am. J. Cardiol. 34:215–223 (1974).

    Article  CAS  PubMed  Google Scholar 

  2. M. B. Rosenbaum, P. A. Chiale, M. S. Halpern, G. J. Nau, J. Przybylski, R. J. Levi, J. O. Lazzari, and M. V. Elizari. Clinical efficacy of amiodarone as an antiarrhythmic agent.Am. J. Cardiol. 38:934–944 (1976).

    Article  CAS  PubMed  Google Scholar 

  3. P. J. Wheeler, R. Puritz, D. V. Ingram, and D. A. Chamberlain. Amiodarone in the treatment of refractory supraventricular and ventricular arrhythmias.Postgrad. Med. J. 55:1–9 (1979).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. F. Andreasen, H. Agerbaek, P. Bjerregaard, and H. Gotzsche. Pharmacokinetics of amiodarone after intravenous and oral administration.Eur. J. Clin. Pharmacol. 19:293–299 (1981).

    Article  CAS  PubMed  Google Scholar 

  5. E. Riva, M. Gerna, R. Latini, P. Giani, A. Volpi, and A. Maggioni. Pharmacokinetics of amiodarone in man.J. Cardiovasc. Pharmacol. 4:264–269 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. M. Anastasiou-Nana, G. M. Levis, and S. Moulopoulos. Pharmacokinetics of amiodarone after intravenous and oral administration.Int. J. Clin. Pharmacol. Ther. Toxicol. 20:524–529 (1982).

    CAS  PubMed  Google Scholar 

  7. C. I. Haffajee, J. C. Love, A. T. Canada, L. J. Lesko, G. Asdourian, and J. S. Alpert. Clinical pharmacokinetics and efficacy of amiodarone for refractory tachyarrhythmias.Circulation 67:1347–1355 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. E. Riva, L. Aarons, R. Latini, P. Neyroz, and R. Urso. Amiodarone kinetics after single i.v. bolus and multiple dosing in healthy volunteers.Eur. J. Clin. Pharmacol. 27:491–494 (1984).

    Article  CAS  PubMed  Google Scholar 

  9. T. A. Plomp, J. M. van Rossum, E. O. Robles de Medina, T. van Lier, and R. A. A. Maes. Pharmacokinetics and body distribution of amiodarone in man.Arzneim. Forsch./ Drug Res. 34:513–520 (1984).

    CAS  Google Scholar 

  10. N. D. Mostow, L. Rakita, T. R. Vrobel, D. Noon, and J. Blumer. Amiodarone: Intravenous loading for rapid suppression of complex ventricular arrhythmias.J Am. Coll. Cardiol. 4:97–104 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. D. Marchiset, R. Bruno, P. Djiane, J. P. Cano, M. Benichou, and A. Serradimigni. Amiodarone and desethylamiodarone elimination kinetics following withdrawal of longterm amiodarone maintenance therapy.Biopharm. Drug Dispos. 6:209–215 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. J. C. Kaski, L. A. Girotti, H. Messuti, B. Rutitzky, and M. B. Rosenbaum. Long term management of sustained, recurrent, symptomatic ventricular tachycardia with amiodarone.Circulation 6:273–279 (1981).

    Article  Google Scholar 

  13. L. Rakita and S. M. Sobol. Amiodarone in the treatment of refractory ventricular arrhythmias. Importance and safety of initial high-dose therapy.J. Am. Med. Assoc. 250:123–125 (1983).

    Article  Google Scholar 

  14. H. H. Rotmensch, B. Belhassen, B. N. Swanson, D. Shoshani, S. R. Spielman, A. J. Greenspon, A. M. Greenspan, P. H. Vlasses, and L. N. Horowitz. Steady-state serum amiodarone concentrations: Relationships with antiarrhythmic efficacy and toxicity.Ann. Int. Med. 101:462–469 (1984).

    Article  CAS  PubMed  Google Scholar 

  15. B. McGovern, H. Garan, E. Kelly, and J. N. Ruskin. Adverse reactions during treatment with amiodarone hydrochloride.Br. Med. J. 287:175–180 (1983).

    Article  CAS  Google Scholar 

  16. S. J. Weir and C. T. Ueda. Rapid liquid chromatographic assay for the determination of amiodarone and itsN-deethyl metabolite in plasma, urine, and bile.J. Pharm. Sci. 74:460–465 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. C. M. Metzler, G. L. Elfring, and A. J. McEwen.A User's Manual for NONLIN and Associated Programs, Upjohn, Kalamazoo, Michigan (1974).

    Google Scholar 

  18. A. J. Sedman and J. G. Wagner. CSTRIP, a Fortran IV computer program for obtaining initial polyexponential parameter estimates.J. Pharm. Sci. 65:1006–1010 (1976).

    Article  CAS  PubMed  Google Scholar 

  19. K. Yamaoka, T. Nakagawa, and T. Uno. Application of Akaike's information criterion (AIC) in the evaluation of linear pharmacokinetic equations.J. Pharmacokin. Biopharm. 6:165–175 (1978).

    Article  CAS  Google Scholar 

  20. R. J. Fruncillo, R. Bernhard, and R. K. Ferguson. The effect of renal failure or biliary stasis on the tissue levels of amiodarone.Clin. Pharmacol. Ther. 37:197 (1985).

    Google Scholar 

  21. E. Riva, M. Gerna, P. Neyroz, R. Urso, I. Bartosek, and A. Guaitani. Pharmacokinetics of amiodarone in rats.J. Cardiovasc. Pharm. 4:270–275 (1982).

    Article  CAS  Google Scholar 

  22. L. A. Siddoway, C. B. McAllister, G. R. Wilkinson, D. M. Roden, and R. L. Woosley. Amiodarone dosing: A proposal based on its pharmacokinetics.Am. Heart J. 106:951–956 (1983).

    Article  CAS  PubMed  Google Scholar 

  23. L. Harris, C. R. K. Hind, W. J. McKenna, C. Savage, S. J. Krikler, G. C. A. Storey, and D. W. Holt. Renal elimination of amiodarone and is desethyl metabolite,Postgrad. Med. J. 59:440–442 (1983).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. O. Grech-Belanger. Depressive effect of amiodarone on hepatic drug metabolism in the rat.Res. Commun. Chem. Pathol. Pharmacol. 44:15–30 (1984).

    CAS  PubMed  Google Scholar 

  25. C. Staiger, R. Jauernig, J. DeVries, and E. Weber. Influence of amiodarone on antipyrine pharmacokinetics in three patients with ventricular tachycardia.Br. J. Clin. Pharmacol. 18:263–264 (1984).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. R. J. Fruncillo, S. H. Kozin, and G. J. DiGregorio. Effect of amiodarone on the pharmacokinetics of phenytoin, quinidine, and lidocaine in the rat.Res. Commun. Chem. Pathol. Pharmacol. 50:451–454 (1985).

    CAS  PubMed  Google Scholar 

  27. G. E. Larijani, P. H. Vlasses, P. Mojaverian, C. L. Saccar, and M. L. Rocci. The influence of amiodarone on the pharmacokinetics of theophylline in rats.Drug Intell. Clin. Pharm. 19:454 (1985).

    Google Scholar 

  28. A. H. Watt, M. R. Stephens, D. C. Buss, and P. A. Routledge. Amiodarone reduces plasma warfarin clearance in man.Br. J. Clin. Pharmacol. 20:707–709 (1985).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. S. Almog, N. Shafran, H. Halkin, P. Weiss, Z. Farfel, U. Martinowitz, and H. Bank. Mechanism of warfarin potentiation by amiodarone: Dose- and concentration-dependent inhibition of warfarin elimination.Eur. J. Clin. Pharmacol. 28:257–261 (1985).

    Article  CAS  PubMed  Google Scholar 

  30. T. A. Plomp, W. M. Wiersinga, and R. A. Maes. Tissue distribution of amiodarone and desethylamiodarone in rats after multiple intraperitoneal administration of various amiodarone dosages.Arzneim. Forsch./Drug Res. 35:122–129 (1985).

    CAS  Google Scholar 

  31. P. Somani, V. A. Simon, and K. McManus. Rapid appearance and tissue uptake of desethylamiodarone in dogs with acute myocardial infarction.Pharmacologist 26:212 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a Grant-in-Aid from the American Heart Association, Nebraska Affiliate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weir, S.J., Ueda, C.T. Amiodarone pharmacokinetics. I. Acute dose-dependent disposition studies in rats. Journal of Pharmacokinetics and Biopharmaceutics 14, 601–613 (1986). https://doi.org/10.1007/BF01067966

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01067966

Key words

Navigation