Skip to main content
Log in

Investigation of the aqueous lithium and magnesium halide systems

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The solubilities of the system LiBr−MgBr2−H2O have been investigated at 25°C and 50°C. It is established that the system is of a simple eutonic type. Pitzer's model is used for calculating the thermodynamic functions needed for plotting the solubility isotherms of the systems LiX−MgX2−H2O (X=Cl, Br) at 25°C. According to calculations made, the Gibbs energy of formation of LiCl·MgCl2·7H2O from simple salts is Δrm=−2.01 kJ-mol−1, while the value Δfm=−2748 kJ-mol−1 corresponds to formation from the elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Fanghaenel, H. H. Emons, and K. Koehnke,Z. Anorg. Allg. Chem. 576, 99 (1989).

    Google Scholar 

  2. W. Biltz and E. Markus,Z. Anorg. Chem. 71, 169 (1911).

    Google Scholar 

  3. R. Baimuradov, G. S. Sedel'nikov, and V. E. Plyushchev, Izv. Acad. Nauk Turkm. SSR, Ser. Fiz.-Tekh., Khim. Geol. Nauk.2, 87 (1969).

    Google Scholar 

  4. J. Campbell and F. Marsh,J. Phys. Chem. 63, 316 (1959).

    Google Scholar 

  5. N. Voskresenskaya and O. Janateva,Izv. Acad. Nauk USSR, Ser. Khim. 1, 102 (1937).

    Google Scholar 

  6. H. H. Emons, P. Brand, T. Pohl and K. Koehnke,Z. Anorg. Allg. Chem. 563, 180 (1988).

    Google Scholar 

  7. V. Blidin, Russ.J. General Chem. 7, 1593 (1947).

    Google Scholar 

  8. J. R. Heiks and A. Garrett,J. Amer. Chem. Soc. 76, 2590 (1954).

    Google Scholar 

  9. Chr. Balarew, V. Karaivanova, and T. Oikova, Comm. Dept. Chem.Bulg. Acad. Sci. 3, 637 (1970).

    Google Scholar 

  10. G. Schwarzenbach and H. Flaschka,Komplexometrische Titration (Russian), (Izd. Khimya, Moscow, (1968).

    Google Scholar 

  11. F. Schreinemakers,Z. Phys. Chem. 11, 76 (1893);55, 73 (1906).

    Google Scholar 

  12. F. Paulik, J. Paulik, and L. Erdey,Derivatograph, Technicheskie osnovi (Vengerskii Optich, Zavod, Budapest, 1974).

    Google Scholar 

  13. K. Pitzer,J. Phys. Chem. 77, 268 (1973).

    Google Scholar 

  14. K. Pitzer,J. Solution Chem. 4, 249 (1975).

    Google Scholar 

  15. Chr. Balarew, Chr. Christov, Vl. Valyashko and S. Petrenko,J. Solution Chem. 22, 173 (1993).

    Google Scholar 

  16. H. T. Kim and W. J. Frederick,J. Chem. Eng. Data 33, 177 (1988).

    Google Scholar 

  17. K. Pitzer and G. Mayorga,J. Phys. Chem. 77, 2300 (1973).

    Google Scholar 

  18. V. Filippov and A. Kalinkin,J. Chem. Thermodyn. 19, 185 (1987).

    Google Scholar 

  19. D. Wagman, W. Evans, V. Parker, R. Schumm, I. Halow, S. Bailey, K. Churney, and R. Nutall,J. Phys. Chem. Ref. Data 11, Supplement 2, (1982).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christov, C., Balarew, C., Petrenko, S. et al. Investigation of the aqueous lithium and magnesium halide systems. J Solution Chem 23, 595–604 (1994). https://doi.org/10.1007/BF00972747

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00972747

Key words

Navigation