Skip to main content
Log in

Alterations of GABA metabolism and seizure susceptibility in the substantia nigra of the kindled rat acclimating to changes in osmotic state

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Seizure susceptibility and GABA metabolism were altered in the substantia nigra [SN] of adult male Sprague Dawley rats when these animals were acclimating to an altered plasma osmolality. Changes in GABA metabolism were measured in vivo in SN of the freely moving rat. Suitable precautions were taken to avoid any post-mortem flux of glutamate to GABA and to correct for the underestimation of GABA build up in SN due to the finite diffusion rate of γ-vinyl GABA [GVG] after stereotaxic injection of small amounts into one side of the brain. Control experiments provided evidence that changes in osmolality, within a normal physiological range, did not affect significantly γ-aminobutyric acid transaminase [GABA-T]. Also kindling via the medial septum [MS], in the absence of electrical stimulation did not alter GABA metabolism in SN, thus providing a stable baseline for studies of osmotic effects. Hyperosmolality was associated with a rise in seizure thresholds, with a marked reduction of the rate of GABA synthesis in SN, and with a substantial increase in turnover time of the GABA pool. Hypoosmolality, of a degree known to be associated with mild cerebral edema and swelling localized to astrocytes, markedly reduced seizure threshold, and reduced GABA pool size in SN, but did not alter the rate of GABA synthesis significantly. These results demonstrate by new and independent means the relationship between GABA metabolism in the SN and seizure susceptibility in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rowntree, L. G. 1926. The effects on mammals of the administration of excessive quantities of water. J. Pharmacol. Therap. 29:135–159.

    Google Scholar 

  2. Garland, H. G., Dick, A. P., and Whitty, C. W. M. 1943. Waterpitressin test in the diagnosis of epilepsy. Lancet 2:566–569.

    Google Scholar 

  3. Carter, C. H. 1962. Status epilepticus treated by intravenous urea. Epilepsia 3:198–200.

    PubMed  Google Scholar 

  4. Baran, H., Lassmann, H., Sperk, G., Seitelberger, F., and Hornykiewicz, O. 1987. Effect of mannitol treatment on brain neurotransmitter markers in kainic acid-induced epilepsy. Neuroscience 21:679–684.

    PubMed  Google Scholar 

  5. Fishman, R. A. 1974. Cell volume, pumps and neurologic function: brain's adaptation to osmotic stress. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 53:159–172.

    PubMed  Google Scholar 

  6. Reed, D. J. and Woodbury, D. M. 1964. The effect of hypertonic urea solution on electroshock seizure threshold and electrolyte distribution in rats. J. Pharmacol. 146:154–159.

    Google Scholar 

  7. Cserr, H. F., DePasquale, M., and Patlak, C. S. 1987. Regulation of brain water and electrolytes during acute hyperosmolality in rats. Am. J. Physiol. 253:F522-F529.

    PubMed  Google Scholar 

  8. Hoffman, E. K., and Simonsen, L. O. 1989. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol. Rev. 69:315–377.

    PubMed  Google Scholar 

  9. Wasterlain, C. G., and Posner, J. B. 1969. Cerebral edema in water intoxication. Arch. Neurol. 19:71–78.

    Google Scholar 

  10. Baxter, C. F., Wasterlain, C. G., Hallden, K. L., and Pruess, S. F. 1986. Effect of altered blood plasma osmolalities on regional brain amino acid concentrations and focal seizure susceptibility in the rat. J. Neurochem. 47:617–624.

    PubMed  Google Scholar 

  11. Medani, C. R. 1987. Seizures and hypothermia due to dietary water intoxication in infants. South. Med. J. 80:421–425.

    PubMed  Google Scholar 

  12. Andrew, R. D. 1990. Seizure and acute osmotic change: clinical and neurophysiological aspects. J. Neurol. Sci. in press.

  13. Andrew, R. D., Fagen, M., Bailyk, B. A., and Rosen, A. S. 1989. Seizure susceptibility and the osmotic state. Brain Res. 498:175–180.

    PubMed  Google Scholar 

  14. Kamphuis, W., Wadman, W. T., Buijs, R. M., and Lopes da Silva, F. H. 1987. The development of change in hippocampal GABA immunoreactivity in the rat kindling model of epilepsy: a light microscopic study with GABA antibodies. Neuroscience 23:433–446.

    PubMed  Google Scholar 

  15. Löscher, W., and Schwark, W. S. 1985. Evidence for impaired GABAergic activity in the substantia nigra of amygdaloid kindled rats. Brain Res. 339:146–150.

    PubMed  Google Scholar 

  16. Roberts, E., Chase, T. N., and Tower, D. B. (eds.) 1976. GABA in Nervous System Function. 554 pages. Raven Press, New York.

    Google Scholar 

  17. Littauer, U. Z., Dudai, Y., Silman, I., Teichberg, V. I., and Vogel, Z. (eds.) 1980. Neurotransmitters and Their Receptors. 570 pages. John Wiley and Sons, New York.

    Google Scholar 

  18. Lal, H., Fielding, S., Malick, J., Roberts, E., Shah, N., and Usdin, E. (eds.) 1980. GABA Neurotransmission: Current Development in Physiology and Neurochemistry. Vol. 5. Supplement 2. 946 pages. Ankho International Inc. Fayetteville, New York.

    Google Scholar 

  19. Gaspar, P., Javoy-Agid, F., Ploska, A., and Agid, F. 1980. Regional distribution of neurotransmitter synthesizing enzymes in the basal ganglia of human brain. J. Neurochem. 34:278–283.

    PubMed  Google Scholar 

  20. Kuriyama, K. 1976. Subcellular localization of the GABA system in brain. Pages 187–196,in Roberts, E., Chase, T. N., and Tower, D. B. (eds.). Kroc. Fdn. Series 5, Raven Press, New York.

    Google Scholar 

  21. Asakura, T., Ikeda, T. and Matsuda, M. 1989. Distribution of activity converting 4-aminobutyraldehyde to γ-aminobutyric acid in subcellular fractions of mouse brain. J. Neurochem. 52:448–452.

    PubMed  Google Scholar 

  22. Wood, J. D. 1981. Evaluation of a synaptosomal model for monitoring in vivo changes in the GABA and glutamate content of nerve endings. Internat. J. Biochem. 13:543–548.

    Google Scholar 

  23. Iadarola, M.J., and Gale, K. 1980. Evaluation of increases in nerve terminal-dependent vs nerve terminal-independent compartments of GABA in vivo. Brain Res. Bull. 5 suppl. 2:13–19.

    PubMed  Google Scholar 

  24. Olsen, R. W., and Tobin, A. J. 1990. Molecular biology of GABA receptors. FASEB J. 4:1469–1480.

    PubMed  Google Scholar 

  25. Ribak, C. E., Joubran, C., Kesslak, J. P., and Bakay, R. A. E. 1989. A selective decrease in the number of GABAergic somata occurs in pre-seizing monkeys with alumina gel granuloma. Epilepsy Res. 4:126–130.

    PubMed  Google Scholar 

  26. Houser, C. R. 1991. GABA neurons in seizure disorders: A review of cytochemical studies. Neurochem. Res. 16:295–308.

    PubMed  Google Scholar 

  27. Guastella, J., Nelson, N., Nelson, H. Czyzyk, L., Keynan, S., Miedel, M. C., Davidson, N., Lester, H. A., and Kanner, B. I. 1990. Cloning and expression of a rat brain GABA transporter. Science 249:1303–1306.

    PubMed  Google Scholar 

  28. Nicholls, D. G. 1989. Release of glutamate, aspartate, and γ-aminobutyric acid from isolated nerve terminals. J. Neurochem. 52:331–341.

    PubMed  Google Scholar 

  29. Green, A. R., Minchin, C. G., and Vincent, N. D. 1987. Inhibition of GABA release from slices prepared from several brain regions of rats at various times following a convulsion. Brt. J. Pharm. 92:13–18.

    Google Scholar 

  30. Hille, B. (ed.) 1984. Ionic Channels of Excitable Membranes. 424 pages. Sinauer Assoc. Mass.

    Google Scholar 

  31. Wafford, K. A., Sattelle, D. B., Abalis, I., Eldefrawi, A. T., and Eldefrawi, M. E. 1987. γ-amino butyric acid-activated36Cl-influx: a functional in vitro assay for CNS γ-aminobutyric acid receptors of insects. J. Neurochem. 48:177–180.

    PubMed  Google Scholar 

  32. Engle, J. Jr., Wolfson, L., and Brown, L. 1978. Anatommical correlates of electrical and behavioral events related to amygdaloid kindling. Ann. Neurol. 3:538–544.

    PubMed  Google Scholar 

  33. Iadarola, M. J., and Gale, K. 1982. Substantia nigra: site of anticonvulsant activity mediated by γ-aminobutyric acid. Sci. 218:1237–1240.

    Google Scholar 

  34. Watford, M. 1990. A “swell” way to regulate metabolism. TIBS. 15:329–330.

    PubMed  Google Scholar 

  35. Baxter, C. F., Kodama, C. K., Baldwin, R. A., and Pruess, S. 1987. Osmolality and glycogen metabolism: Effect on brain and liver. J. Neurochem. 48:94.

    PubMed  Google Scholar 

  36. Baxter, C. F. 1986. The effect of altered osmolalities upon putative neurotransmitter amino acids in the central nervous system: Biochemical mechanisms with some physiological and behavioral correlates. Bull. Tokyo Met. Inst. for Neurosci. 15 suppl. 2:83–99.

    Google Scholar 

  37. Pasantes-Morales, H., and Schousboe, A. 1988. Volume regulation in astrocytes: A role for taurine as an osmoeffector. J. Neurosci. Res. 20:505–509.

    Google Scholar 

  38. Baxter, C. F., Baldwin, R. A., and Oh, C. C. 1990. Acclimation to hyper and hypo-osmotic changes: the anomalous behavior of taurine in the nervous system and in the blood of vertebrates. Pages 329–336,in Pasantes-Morales, H., Martin, D. L., Shain, W., and Martin del Rio, R. (eds.), Taurine: Functional Neurochemistry, Physiology, and Cardiology, Wiley-Liss Inc., New York.

    Google Scholar 

  39. Kulakowski, E. C., Maturo, J., and Schaffer, S. W. 1985. The low affinity taurine binding protein may be related to the insulin receptor. Pages 127–136,in Oja S. S., Antee, L., Kontro, P., and Paasonen, M. K. (eds), Taurine: Biological actions and clinical perspectives, Alan R. Liss, New York.

    Google Scholar 

  40. Maturo, J. M., and Kulakowski, E. C. 1988. Taurine binding to the purified insulin receptor. Biochem. Pharmacol. 33:3755–3760.

    Google Scholar 

  41. Paxinos, G., and Watson, C. 1986. The Rat Brain in Sterotaxic Coordinates, Second edition, Academic Press, New York.

    Google Scholar 

  42. Casu, M., and Gale, K. 1981. Intracerebral injection of gamma vinyl GABA: method for measuring rates of GABA synthesis in specific brain regions in vivo. Life Sci. 29:681–688.

    PubMed  Google Scholar 

  43. Wasterlain, C. G., and Farber, D. B. 1982. A lasting change in protein phosphorylation associated with septal kindling. Brain Res. 247:191–194.

    PubMed  Google Scholar 

  44. Racine, R. J. 1972. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 32:281–294.

    Google Scholar 

  45. Racine, R. J., 1978. Kindling: the first decade. J. Neurosurg. 3:234–252.

    Google Scholar 

  46. Gale, K. 1984. Binding of [3H] gamma-vinyl-GABA to GABA transaminase in brain homogenates. Life Sci. 34:701–706.

    PubMed  Google Scholar 

  47. Gale, K., Sarvey, C., Stork, J., Childs, G. A., Yalisovc, B. L., and Dayhoff, R. E. 1984. Quantitative histochemical measurement of GABA transminase: method for evaluation of intracerebral lesions produced by excitotoxic agents. Brain Res. 307:255–262.

    PubMed  Google Scholar 

  48. Karlsson, A., Fonnum, F., Malthe-Sorenssen, D., and Storm-Mathisen, J. 1974. Effect of the convulsive agent 3-mercaptopropionic acid on the levels of GABA, other amino acids, and glutamate decarboxylase in different regions of the rat brain. Biochem. Pharm. 23:3053–3061.

    PubMed  Google Scholar 

  49. Van der Heyden, J. A. M., and Korf, J. 1978. Regional levels of GABA in the brain: Rapid semiautomated assay and prevention of postmortem increase by 3-mercapto-propionic acid. J. Neurochem. 31:197–203.

    PubMed  Google Scholar 

  50. Minard, F. N., and Mushahwar, I. K. 1966. Synthesis of γ-aminobutyric acid from a pool of glutamic acid in brain after decapitation. Life Sci. 5:1409–1413.

    PubMed  Google Scholar 

  51. Van der Heyden, J. A. M., deKloet, E. R., Korf, J., and Versteeg, D. H. G. 1979. GABA content of discrete brain nuclei and spinal cord of the rat. J. Neurochem. 33:857–861.

    PubMed  Google Scholar 

  52. Baxter, C. F., Parsons, J. E., Oh, C. C., Wasterlain, C. G., and Baldwin, R. A. 1989. Changes of amino acid gradients in brain tissue induced by microwave irradiation and other means. Neurochem. Res. 14:909–913.

    PubMed  Google Scholar 

  53. Giorgi, O., and Meek, J. L. 1984. γ-aminobutyric acid turnover in rat striatum: effects of glutamate and kainic acid. J. Neurochem. 42:215–220.

    PubMed  Google Scholar 

  54. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M. Olson, B. J., and Klenk, D. C. 1985. Measurement of protein using bicinchoninic acid. Analyt. Biochem. 150:76–85.

    PubMed  Google Scholar 

  55. Baxter, C. F., and Baldwin, R. A. 1978. A functional role for amino acids in the adaptation of tissue from the nervous system to alterations in environmental osmolality. Pages 599–627,in Fonnum, F. (ed.), Amino Acids as Chemical Transmitters, Plenum Press, New York.

    Google Scholar 

  56. Jones, B. N., and Gilligan, J. P. 1983. O-pthaladehyde precolumn derivation and reversed-phase high-performance liquid chromatography of polypeptide hydrolysates and physiological fluids. J. Chromatog. 266:471–482.

    Google Scholar 

  57. Tachiki, K. H. and Baxter, C. F. 1979. Taurine levels in brain tissues: a need for reevaluation. J. Neurochem. 33:1125–1129.

    PubMed  Google Scholar 

  58. Jarrett, H. W., Cooksy, K. D. Ellis, B., and Anderson, J. M. 1986. The separation of O-pthaladehyde derivatives of amino acids by reversed-phase chromatography of octylsilica columns. Analyt. Biochem. 153:189–198.

    PubMed  Google Scholar 

  59. Cubells, J. F., Blanchard, J. S., Smith, D. M., and Makman, M. H. 1986.In vivo action of enzyme-activated irreversible inhibitors of glutamic acid decarboxylase and γ-aminobutyric acid transaminase in retina vs brain. J. Pharmacol. Exptl. Therap. 238:508–514.

    Google Scholar 

  60. Traynelis, S. F., and Dingledine, R. 1989. Role of hyperosmotic space in hyperosmotic suppression of potassium-induced electrographic seizures. J. Neurophysiol. 61:927–940.

    PubMed  Google Scholar 

  61. Paulsen, R. E., and Fonnum, F. 1988. Regulation of transmitter γ-aminobutyric acid (GABA) synthesis and metabolism illustrated by the effect of γ-vinyl GABA and hypoglycemia. J. Neurochem. 50:1151–1157.

    PubMed  Google Scholar 

  62. Jung, M. J., Lippert, B. Metalf, B. W., Bohlen, P., and Schechter, P. J. 1977. γ-vinyl-GABA, a new selective irreversible inhibitor of GABA-T: effects on brain GABA metabolism in mice. J. Neurochem. 29:797–802.

    PubMed  Google Scholar 

  63. Baxter, C. F., Oh, C. C., and Wasterlain, C. G. 1990. Effect of electrical stimulation on GABA metabolism in substantia nigra [SN] and hippocampus [HC] of kindled rats. Epilepsia 31:631.

    Google Scholar 

  64. Garant, D. S., and Gale, K. 1987. Substantia nigra mediated anticonvulsant actions: role of nigral output pathways. Experimental Neurology. 97:143–159.

    PubMed  Google Scholar 

  65. Baxter, C. F., Oh, C. C., and Ozaki, L. K. 1990. GABA turnover in substantia nigra: effects of altered plasma osmolalities. Proc. Am. Soc. Neurochem. p161. Phoenix Arizona.

  66. Arieff, A. I., Guisado, R., and Lazarowitz, V. C. 1977. Pathophysiology of hyperosmolal states. Pages 227–250,in Andreoli, T. E., Graham, J. J., and Rector, F. C. (eds.), Disturbances in Body Fluid Osmolality Am. Physiol. Soc. Publication, Williams and Wilkins Co., Baltimore, MD.

    Google Scholar 

  67. Vastola, E. G., Maccario, M., and Homan, R. 1967. Activation of epileptogenic foci by hyperosmolality. Neurology 17:520–526.

    PubMed  Google Scholar 

  68. Green, A. R., Metz, A., Minchin, C. W., and Vincent, N. D. 1987. Inhibition of the rate of GABA synthesis in regions of rat brain following a convulsion. Brit. J. Pharmacol. 92:5–11.

    Google Scholar 

  69. Balcon, G. J., Lenox, R. H., and Meyerhoff, J. L. 1975. Regional γ-aminobutyric acid levels in rat brain determined after microwave fixation. J. Neurochem. 24:609–613.

    PubMed  Google Scholar 

  70. Ciesielski, L., Simler, S., Clement, J., and Mandel, P. 1987. Effect of repeated convulsive seizures on brain γ-aminobutyric acid metabolism in three sublines of mice differing by their responsed to acoustic stimulation. J. Neurochem. 49:220–226.

    PubMed  Google Scholar 

  71. Liu, D. D., Ueno, E., Ho, I. K., and Hoskins, B. 1988. Evidence that alterations in γ-aminobutyric acid and acetylcholine in rat striata and cerebella are not related to soman-induced convulsions. J. Neurochem. 51:181–187.

    PubMed  Google Scholar 

  72. Seiler, N., and Sarhan, S. 1984. Synergistic anticonvulsant effects of GABA-T inhibitors and glycine. Naunyn-Schmiedlberg's Arch. Pharmacol. 326:9–57.

    Google Scholar 

  73. Liu, Z., Seiler, N., Marescaux, C., Depaulis, A., and Vergnes, M. 1990. Potentiation of γ-vinyl GABA (Vigabatrin) effects by glycine. Europ. J. Pharmacol. 182:109–115.

    Google Scholar 

  74. Sarhan, S. Casara, P., Knodgen, B., and Seiler, N. 1990. (4S)-4 amino-5,6 Heptadienoic acid (MDL72483): A potent anticonvulsant GABA-T inhibitor. Neurochem. Res. this volume.

  75. Mao, C. C., and Costa, E. 1978. Biochemical pharmacology of GABA transmission. Pages 307–318,in Lipton, M. A., Dimascio, A., and Killam, K. F. (eds.), Psychopharmacology: A Generation of Progress, Raven Press, New York.

    Google Scholar 

  76. Gale, K. 1982. Evidence for GABA receptors on serotonergic afferent terminals in the substantia nigra efferent projections to the caudal mesencephelon. Brain Res. 231:209–215.

    PubMed  Google Scholar 

  77. Ribak, C. E. 1983. Morphological, biochemical and immunocytochemical changes of the cortical GABAergic system in epileptic foci. Pages 110–130,in Ward, A. A. Jr., Perry, J. K., and Purpura, D. (eds.), Raven Press, New York.

    Google Scholar 

  78. Kamphuis, W., Wadman, W. J., Buijs, R. M., and Lopes da Silva, F. H. 1988. Decrease in number of hippocampal gamma-aminobutyric acid (GABA) immunoreactive cells in the rat kindling model of epilepsy. Exp. Brain Res. 64:91–495.

    Google Scholar 

  79. Ribak, C. E., Harris, A. B., Vaughn, J. E., and Roberts, E. 1979. Inhibitory GABAergic nerve terminals decrease at sites of focal epilepsy. Science 205:211–214.

    PubMed  Google Scholar 

  80. Brailowsky, S., Kunimoto, M., Menini, C., Silva Barrat, C., Riche, D., and Naquet, R. 1988. The GABA-withdrawal syndrome: A new model of focal epileptogenesis. Brain Res. 442:175–179.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Eugene Roberts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baxter, C.F., Oh, C.C., Wasterlain, C.G. et al. Alterations of GABA metabolism and seizure susceptibility in the substantia nigra of the kindled rat acclimating to changes in osmotic state. Neurochem Res 16, 269–278 (1991). https://doi.org/10.1007/BF00966090

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966090

Key Words

Navigation