Skip to main content
Log in

Subcellular fractionation and distribution of cholinergic binding sites in fetal human brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Conventional subcellular fractionation techniques have been applied to human fetal brain (13–15 weeks gestation) and the fractions have been characterized by assaying for marker enzymes, cholinergic binding sites and electron microscopy. Fractionation of the homogenate resulted in a nuclear pellet (P1), a crude mitochrondrial pellet (P2) and a supernatant (S2). Further resolution of the P2 fraction by density gradient centrifugation resulted in two bands at the gradient interfaces and a pellet. The P2 and subsequently the P2B fraction contained intact plasma membrane profiles as judged by the predominance of adenylate cyclase activity and the presence of occluded lactate dehydrogenase which constituted over 70% of the total activity in these fractions. Morphological examination of the gradient fractions revealed that the P2B fraction contains membrane bound structures which resembie synaptosomes prepared from neonatal rat brain. These structures have a granular matrix in which mitochondria and frequently, neurofilaments were observed. Very few synaptic vesicles were present and there was no evidence for post synaptic attachments. The cholinergic markers choline acetyltransferase, acetylcholinesterase and receptor sites defined by quinuclidinyl benzilate and α-bungarotoxin binding were enriched in fractions P2 and P2B which contained the bulk of nerve ending particles. This enriched preparation of fetal synaptosomes may be valuable for functional studies on pre-synaptic terminals in developing brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bull, G., Hebb, C., andRakovic, D. 1970. Choline acetyltransferase activity of human brain tissue during development and at maturity. J. Neurochem. 17:1505–1516.

    Google Scholar 

  2. Brooksbank, B. W., Martinez, M., Atkinson, D. J. andBalazs, R. 1978. Biochemical development of human brain I. some parameters of the cholinergic system. Dev. Neurosci. 1:267–284.

    Google Scholar 

  3. Aguilar, J. S., andLunt, G. G. 1985. Muscarinic receptor sites in human fetal brain. Neurochem. Int. 7:509–514.

    Google Scholar 

  4. Ravikumar, B. V., andSastry, P. S. 1985. Muscarinic cholinergic receptors in human fetal brain: Characterisation and ontegeny of [3H]quinuclidinyl benzilate binding sites in frontal cortex. J. Neurochem. 44:240–246.

    Google Scholar 

  5. Whyte, J., Harrison, R., Lunt, G. G., andWonnacott, S. 1985. Properties of α-bungarotoxin binding sites in fetal human brain. Neurochem. Int. 7:515–523.

    Google Scholar 

  6. Barnard, E. A., andDolly, J. O. 1982. Peripheral and central acetylcholine receptors—how similar are they? Trends in Neurosci. 5:325–327.

    Google Scholar 

  7. Wonnacott, S., Harrison, R., andLunt, G. G. 1982. Immunological cross-reactivity between the α-bungarotoxin binding component from rat brain and nicotinic acetylcholine receptor. J. Neuroimmun. 3:1–13.

    Google Scholar 

  8. Oswald, R. E., andFreeman, J. A. 1981. Alpha-bungarotoxin binding and central nervous system acetylcholine receptors. Neuroscience 6:1–14.

    Google Scholar 

  9. Heilbronn, E., andBartfai, T. 1978. Muscarinic acetylcholine receptor. Progress in Neurobiology. 11:171–188.

    Google Scholar 

  10. De Robertis, E., Pellegrino de Iraldi, A., Rodriguez de Lores Arnaiz, G., andGomez, C. J. 1961. On the isolation of nerve endings and synaptic vesicles. J. Biophys. Biochem. Cytol. 9:229–235.

    Google Scholar 

  11. De Robertis, E., Pellegrino de Iraldi, A., Rodriguez de Lores Arnaiz, R. G., andSalganicoff, L. 1962. Cholinergic and non-cholinergic nerve endings in rat brain I. Isolation and subcellular distribution of acetylcholine and acetylcholinesterase. J. Neurochem. 9:23–35.

    Google Scholar 

  12. Gray, E. G., andWhittaker, V. P. 1962. The isolation of nerve endings from brain; an electron-microscopic study of cell fragments derived by homogenisation and centrifugation. J. Anat. 96:79–88.

    Google Scholar 

  13. Gibson, G. andBlass, J. 1982. Synaptosomes, Pages 289–321,in Hannin, I., andGoldberg, A. M. (eds.), Progress in cholinergic biology; model cholinergic synapses. Raven Press, New York.

    Google Scholar 

  14. Dodd, P., Hardy, J. A., Oakley, A. E., andStrong, A. J. 1981. Synaptosomes prepared from fresh human cerebral cortex; morphology, respiration and release of transmitter amino acids. Brain Res. 224:419–425.

    Google Scholar 

  15. Garey, R. E., Harper, J. W., andHeath, R. G. 1974. Postmortem isolation of synaptosomes from human brain. Brain Res. 82:151–162.

    Google Scholar 

  16. Van Kempen, G. M. J. andVrensen, G. F. M. 1974. Biochemical and morphological integrity of subcellular organelles from human postmortem brain. Neurobiol. 4:12–20.

    Google Scholar 

  17. Hickey, S. M., Ansell, G. B., Mitchel, K., andPearce, G. A. 1976. Subcellular fractions of normal brain substantia nigra and caudate nucleus; a study of their morphology and some enzymes including glutamate decarboxylase and choline acetyltransferase. J. Neurochem. 27:957–962.

    Google Scholar 

  18. Hardy, J. A., Dodd, P. R., Oakley, A. E., Kidd, A. M., Perry, R. H., andEdwardson, J. A. 1982. Use of post-mortem human synaptosomes for studies of metabolism and transmitter amino acid release. Neurosci. Lett. 33:317–322.

    Google Scholar 

  19. Hardy, J. A., Dodd, P. R., Oakley, A. E., Perry, R. H., Edwardson, J. A. andKidd, A. M. 1983. Metabolically active synaptosomes can be prepared from frozen rat and human brain. J. Neurochem. 40:608–614.

    Google Scholar 

  20. Yamamura, H. I., andSnyder, S. H. 1974. Postsynaptic localisation of muscarinic cholinergic receptor binding in rat hippocampus. Brain. Res. 78:320–326.

    Google Scholar 

  21. Fonnum, F. 1969. Radiochemical microassays for the determination of ChAC and AChE activities. Biochem. J. 115:465–472.

    Google Scholar 

  22. Ellman, G. L., Courtney, D., Andres, S. V., andFeatherstone, R. M. 1961. A new and rapid colorimetric determination of acetylcholonesterase activity. Biochem. Pharmac. 7:88–95.

    Google Scholar 

  23. Johnson, M. K. 1960. The intracellular distribution of glycolytic and other enzymes in rat brain homogenates and mitochondrial preparations. Biochem. J. 77:610–618.

    Google Scholar 

  24. Marchbanks, R. M. 1967. The osmotically sensitive potassium and sodium compartments of synaptosomes. Biochem. J. 104:148–157.

    Google Scholar 

  25. Furman, M. A., andShulman, K. 1977. Cyclic AMP and adenyl cyclase in brain tumours. J. Neurosurg. 46:477–483.

    Google Scholar 

  26. Brown, B., Albano, J., Ekins, R. P., andSgherzi, A. M. 1971. A simple and sensitive saturation assay method for the measurement of adenosine 3′:5′-cyclic monophosphate. Biochem. J. 121:561–562.

    Google Scholar 

  27. Porteus, J. W., andClark, B. 1965. The isolation and characterisation of subcellular components of the epithelial cells of rabbit small intestine. Biochem. J. 96:159–171.

    Google Scholar 

  28. Forsdyke, J. B. 1979. A simple apparatus for staining and washing a batch of grids. J. Microscopy 117:437–440.

    Google Scholar 

  29. Wonnacott, S., Harrison, R., andLunt, G. G. 1980. Interrelationship of carbohydrate and the α-toxin binding site on the acetylcholine receptor from Torpedo marmorata. Life. Sci. 27:1769–1775.

    Google Scholar 

  30. De Robertis, E., Rodriguez De Lores Arnaiz, R. G., Alberici, M., Butcher, R. W., andSutherland, E. W. 1967. Subcellular distribution of adenyl cyclase and cyclic phosphodiesterase in rat brain cortex. J. Biol. Chem. 242:3487–3493.

    Google Scholar 

  31. Sinha, A. K., Mahajan, R. G., Mandel, S., Mukopadhyaya, S., Naryanswam, A. andMukherjee, K. L. 1980. Ontogeny of soluble proteins in fetal human brain. Indian J. of Biochem. Biophys. 17:37–41.

    Google Scholar 

  32. Dobbing, J., andSands, J. 1973. The quantitative growth and development of the human brain. Arch. Diseases Childhood 48:757–767.

    Google Scholar 

  33. Sarma, M. K. J., andSubba Rao, K. 1976. Growth and development in different regions of human fetal brain: Changes in wet weight, moisture content and nucleic acids. Indian J. Med. Res. 64:154–161.

    Google Scholar 

  34. Savolainen, H., Palo, J., Riekkinen, P., Moronen, P., andBrody, L. E. 1971. Maturation of myelin protein in human brain. Brain Res. 37:253–263.

    Google Scholar 

  35. Jones, D. G. 1975. Synapses and synaptosomes. Chapman & Hall, London.

    Google Scholar 

  36. Jones, D. G., andRevell, E. 1970. The postnatal development of the synapse: a morphological approach utilising synaptosomes. I. general features. Z. Zellforsch 111:179–194.

    Google Scholar 

  37. Gonatas, N. K., Autillo-Gambetti, L., Gambetti, P., andShafer, B. 1971. Morphological and biochemical changes in rat synaptosome fractions during neonatal development. J. Cell Biol. 51:484–498.

    Google Scholar 

  38. Marks, N., Stern, F., andLajtha, A. 1975. Changes in proteolytic enzymes and proteins during maturation of the brain. Brain Res. 86:307–322.

    Google Scholar 

  39. Barrantes, F. J., andLunt, G. G. 1970. Enzymatic digestion of synapses in rat cerebral cortex. Brain Res. 23:305–313.

    Google Scholar 

  40. Rees, S. 1977. The incidence of ultrastructural abnormalities in the cortex of two retarded human brains (Down's syndrome). Acta Neuropath. 37:65–68.

    Google Scholar 

  41. Swanson, P. D., Harvey, F. H., andStahl, W. L. 1973. Subcellular fractionation of postmortem brain. J. Neurochem. 20:465–475.

    Google Scholar 

  42. Fonnum, F. 1967. The “compartmentation” of choline acetyltransferase within the synaptosome. Biochem. J. 103:262–270.

    Google Scholar 

  43. Wong, P., andPrince, A. K. 1979. The membrane binding of choline acetyltransferase: uptake and acetylation of3H-choline in rabbit cortical slices. Neuropharmacol. 18:511–513.

    Google Scholar 

  44. Spence, M. W., andWolfe, L. S. 1967. Gangliosides in developing rat brain. Isolation and composition of subcellular membranes enriched in gangliosides. Canadian J. of Biochem. 43:671–688.

    Google Scholar 

  45. Ivanshina, Z. 1978. Development of synaptic contacts in the human brain at early stages of embryogenesis. Zhurnol Neuropatologiii Psikhiatrii 76:292–298.

    Google Scholar 

  46. Huttenlocher, P. R., de Courten, C., Garey, L. J. andVan der Loos, H. 1982. Synaptogenesis in human visual cortex-evidence for synapse elimination during normal development. Neurosci. Lett. 33:247–252.

    Google Scholar 

  47. Petit, T. L., Le Boutillier, J. C., Alfano, D. P., andBecher, L. E. 1984. Synaptic development in the human fetus: A morphometric analysis of Normal and Down's syndrome neocortex. Experimental Neurology 83:13–23.

    Google Scholar 

  48. Mollivar, M. E., Kostovic, I. andVan der Loos, H. 1973. The development of synapses in cerebral cortex of the human fetus. Brain. Res. 50:403–407.

    Google Scholar 

  49. De Belleroche, J. S., andBradford, H. F. 1978. Biochemical evidence for the presence of presynaptic receptors on dopaminergic nerve terminals. Brain Res. 142:53–68.

    Google Scholar 

  50. Mills, A., andWonnacott, S. 1984. Antibodies to nicotinic acetylcholine receptors used to probe the structural and functional relationships between brain α-bungarotoxin binding sites and nicotinic receptors. Neurochem. Int. 6:249–257.

    Google Scholar 

  51. Rapier, C., Harrison, R., Lunt, G. G., andWonnacott, S. 1985. Neosurugatoxin blocks nicotinic acetylcholine receptors in the brain. Neurochem. Int. 7:389–396.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special Issue dedicated to Prof. Eduardo De Robertis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whyte, J., Harrison, R., Lunt, G.G. et al. Subcellular fractionation and distribution of cholinergic binding sites in fetal human brain. Neurochem Res 11, 1011–1023 (1986). https://doi.org/10.1007/BF00965590

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965590

Keywords

Navigation