Skip to main content
Log in

Uptake of piperidine and pipecolic acid by synaptosomes from mouse brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Piperidine is actively transported into the synaptosomal fraction of adult mouse brain. The transport mechanism appears to be Na+ independent but is temperature dependent and sensitive to ouabain. Analysis of kinetic experiments indicates only a “low-affinity” transport system to be present. By contrast the uptake ofD,L-[3H]pipecolic acid at a concentration of 4×10−7 M was temperature and Na+ dependent, ouabain sensitive, and revealed a two-component system with aK m =3.9±0.17×10−6 M,V max=129±6 pmol/mg protein/3 min for the “high-affinity” system and aK m =90.2±4.3×10−6 M,V max=2.45±0.19 nmol/mg protein/3 min for the “low-affinity” system. Compounds structurally related to pipecolic acid such as glycine,l-proline, 4-amino-n-butyric acid, and 5-amino-n-valeric acid showed an inhibitory effect on uptake at a concentration of 10−4 M. The demonstration of biosynthesis of pipecolic acid in mouse brain and the presence of a “high-affinity” sodium-dependent uptake system suggest a physiological role of this substance in the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giacobini, E. 1976. Piperidine: A new neuromodulator or a hypnogenic substance? Pages 17–56,in Costa, E., Giacobini, E., andPaoletti, R. (eds.), First and Second Messengers—New Vistas, Raven Press, New York.

    Google Scholar 

  2. Stepita-Klauco, M., Dolezalova, H., andGiacobini, E. 1973. The action of piperidine on cholinoceptive neurons of the snail. Brain Res. 63:141–152.

    PubMed  Google Scholar 

  3. Dolezalova, H., andStepita-Klauco, M. 1974. Piperidine concentration changes in the brain and blood of dormant mice. Brain Res. 74:182–184.

    PubMed  Google Scholar 

  4. Dolezalova, H., Stepita-Klauco, M., andFairweather, R. 1974. The accumulation of piperidine in the central ganglia of dormant snails. Brain Res. 72:115–122.

    PubMed  Google Scholar 

  5. Giacobini, E., andDrucker-Colin, R. R. 1977. Piperidine: An endogenous hynogenic amine? Pages 281–293,in Drucker-Colin, R. R., andMcGaugh, J. L. (eds.), Neurobiology of Sleep and Memory, Academic Press, New York.

    Google Scholar 

  6. Giacobini, E. 1975. Seasonal and activity dependent variation of biogenic amine levels in the invertebrate CNS. Pages 59–69,in Levin, P., andKoella, P. (eds.), Sleep 1974, S. Karger, Basel.

    Google Scholar 

  7. Stepita-Klauco, M., Dolezalova, H., andFairweather, R. 1974. Piperidine increase in the brain of dormant mice. Science 183:536.

    PubMed  Google Scholar 

  8. Barsuhn, C. 1976. The measurement of nanogram amounts of piperidine in tissues by gas chromatography. Life Sci. 18:419–422.

    PubMed  Google Scholar 

  9. Seiler, N., andSchneider, H. H. 1974. Estimation of picomole quantities of piperidine in tissues. Biomed. Mass Spectrosc. 1:381–385.

    Google Scholar 

  10. Kase, Y., Kataoka, M., andMiyata, T. 1967. In vitro production of piperidine from pipecolic acid in the presence of brain tissue. Life Sci. 6:2427–2431.

    Google Scholar 

  11. Kase, Y., Okano, Y., Yamanishi, Y., Kataoka, M., Kitahara, K., andMiyata, T. 1970. In vivo production of piperidine from pipecolic acid in the rat. Life Sci. 9:1381–1387.

    Google Scholar 

  12. Kase, Y., Kataoka, T., Miyata, T., andOkano, Y. 1973. Pipecolic acid in the dog brain. Life Sci. 13:867–873.

    PubMed  Google Scholar 

  13. Kase, Y., Okano, Y., Miyata, T., Kataoka, M., andYonehara, N. 1974. The production of piperidine from pipecolic acid in the rat brain. Life Sci. 14:785–791.

    PubMed  Google Scholar 

  14. Schmidt-Glenewinkel, T., Nomura, Y., andGiacobini, E. 1977. The conversion of lysine into piperidine, cadaverine, and pipecolic acid in the brain and other organs of the mouse. Neurochem. Res. 2:619–637.

    Google Scholar 

  15. Nixon, R. A., andKarnovsky, M. L. 1977. Uptake and metabolism of intraventricular administered piperidine and its effect on sleep and wakefulness in the rat. Brain Res. 134:501–511.

    PubMed  Google Scholar 

  16. Burgstahler, A. W., andAiman, C. E. 1960. A direct synthesis ofD,L-baikiain. J. Org. Chem. 25:489–492.

    Google Scholar 

  17. Hajos, F. 1975. An improved method for the preparation of synaptosomal fractions in high purity. Brain Res. 93:485–489.

    PubMed  Google Scholar 

  18. Nomura, Y., Tanaka, Y., andSegawa, T. 1975. Development of the influences of sodium, catecholamine, and tricyclic antidepressant drug on the uptake of3H-5-hydroxytryptamine by rat brain synaptosomes. Brain Res. 100:705–709.

    PubMed  Google Scholar 

  19. Nomura, Y., Naitoh, F., andSegawa, T. 1976. Regional changes in monoamine content and uptake of the rat brain during postnatal development. Brain Res. 101:305–315.

    PubMed  Google Scholar 

  20. Lineweaver, H. andBurk, D. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56:658–666.

    Google Scholar 

  21. Cleland, W. W. 1967. The statistical analysis of enzyme kinetic data. Adv. Enzymol. 29:1–32.

    PubMed  Google Scholar 

  22. Lowry, O. H., Rosenbrough, J. N., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–267.

    PubMed  Google Scholar 

  23. Kase, Y., andMiyata, T. 1976. Neurobiology of piperidine: Its relevance to CNS function. Pages 5–16,in Costa, E., Giacobini, E., andPaoletti, R. (eds.), First and Second Messengers—New Vistas, Raven Press, New York.

    Google Scholar 

  24. Kase, Y., Yonehara, N., Okano, Y., Miyata, T., andTakahama, K. 1975. Subcellar location of3H-piperidine in the rat brain. Life Sci. 15:1197–1202.

    Google Scholar 

  25. Meek, J. L. 1975. Uptake and metabolism of piperidine and pipecolic acid in brain. Fed. Proc. Abstr. Pharmacol. 1453–1468.

  26. Korgsgaard-Larsen, P., andJohnston, G. A. R. 1975. Inhibition of GABA uptake in rat brain slices by nipecotic acid, various isoxazoles and related compounds. J. Neurochem. 25:797–802.

    PubMed  Google Scholar 

  27. Johnston, G. A. R., Stephanson, A. L., andTwitchen, B. 1976. Uptake and release of nipecotic acid by rat brain slices. J. Neurochem. 26:83–87.

    PubMed  Google Scholar 

  28. Sershen, H., andLajtha, L. 1979. Inhibition pattern by analogs indicates the presence of ten or more transport systems for amino acids in brain cells. J. Neurochem. 32:719–726.

    PubMed  Google Scholar 

  29. Raghupathy, E., andPeterson, N. A. 1977. Structural requirements for amino acid inhibition of Na+-dependent proline uptake by rat brain synaptosomes. J. Neurochem. 29:859–863.

    PubMed  Google Scholar 

  30. Chang, Y. F. 1976. Pipecolic acid pathway: The major lysine metabolic route in the rat brain. Biochem. Biophys. Res. Commun. 69:174–180.

    PubMed  Google Scholar 

  31. Chang, Y. F. 1978. Lysine metabolism in the rat brain: The pipecolic acid-forming pathway. J. Neurochem. 30:347–354.

    PubMed  Google Scholar 

  32. Chang, Y. F. 1978. Lysine metabolism in the rat brain: Blood-brain barrier transport, formation of pipecolic acid and human hyperpipecolatemia. J. Neurochem. 30:355–360.

    PubMed  Google Scholar 

  33. Nomura, Y., Schmidt-Glenewinkel, T., andGiacobini, E. 1978. In vitro formation of piperidine, cadaverine and pipecolic acid in chick and mouse brain during development. Dev. Neurosci. 1:239–249.

    Google Scholar 

  34. Schmidt-Glenewinkel, T., Nomura, Y., andGiacobini, E. 1978. Pipecolic acid uptake in mouse brain synaptosomes. Ninth annual meeting American Society Neurochemistry, Washington, D.C., Abstract 135, p. 115.

  35. Nomura, Y., Okano, Y., Segawa, T., Schmidt-Glenewinkel, T. andGiacobini, E. 1979. A calcium-dependent, high-potassium, induced release of pipecolic acid from rat brain slices. J. Neurochem. 33:803–805.

    PubMed  Google Scholar 

  36. Gatfield, P. D., Taller, E., Hinton, G. G., Wallace, A. C., Abdel-Hour, G. M., andHaust, M. D. 1968. Hyperpipecolatemia: A new metabolic disorder associated with neuropathy and hepatomegaly. Can. Med. Assoc. J. 99:1215–1233.

    PubMed  Google Scholar 

  37. Thomas, G. H., Haslam, R. H., Batshaw, M. L., Capute, A. J., Neidengard, L., andRansom, J. L. 1975. Hyperpipecolic acidemia associated with hepatomegaly, mental retardation, optic nerve dysplasia and progressive neurological disease. Clin. Gen. 8:376–382.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nomura, Y., Schmidt-Glenewinkel, T. & Giacobini, E. Uptake of piperidine and pipecolic acid by synaptosomes from mouse brain. Neurochem Res 5, 1163–1173 (1980). https://doi.org/10.1007/BF00964896

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964896

Keywords

Navigation