Skip to main content
Log in

Erythrocyte antioxidant enzymes in multiple sclerosis and the effect of hyperbaric oxygen

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The activities of catalase, glutathione peroxidase, and glutathione reductase, were not significantly different from normal whereas that of superoxide dismutase was decreased (P<0.05) in erythrocytes from patients with multiple sclerosis. Assay of the lipid peroxidation product, malondialdehyde, after incubation of erythrocytes with 10 mM H2O2 under carefully controlled conditions (peroxide stress test) demonstrated that MS erythrocytes are significantly (P<0.001) less susceptible to H2O2-induced lipid peroxidation in vitro. This finding suggests that the level of an endogenous antioxidant, possibly vitamin E, may be elevated in MS red cells. After treatment with hyperbaric O2, the activity of MS erythrocyte catalase is significantly (P<0.01) elevated by 2–6-fold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davison, A. N. 1978. Progress in recent research on multiple sclerosis. Biochem. Soc. Trans. 6:443–447.

    PubMed  Google Scholar 

  2. McFarlin, D. E., andMcFarland, H. F. 1982. Medical progress: multiple sclerosis. New Eng. J. Med. 307:1246–1251.

    PubMed  Google Scholar 

  3. Kurantsin-Mills, J., Samji, N., Moscarello, M. A., andBoggs, J. M. 1982. Comparison of membrane structure, osmotic fragility and morphology of multiple sclerosis and normal erythrocytes. Neurochem. Res. 7:1523–1540.

    PubMed  Google Scholar 

  4. Berner, B., Blanco, C. E., Ellison, G. W., Myers, L. W., andHirsch, H. E. 1980. Partition coefficients of 2,2,6,6-tetramethylpiperidine-1-oxyl in erythrocyte lipids in multiple sclerosis. J. Neurosci. Res. 5:225–232.

    PubMed  Google Scholar 

  5. Prineas, J. 1968. Red blood cell size in multiple sclerosis. Acta Neurol. Scand. 44:81–90.

    PubMed  Google Scholar 

  6. Plum, C. M., andFog, T. 1959. Studies in multiple sclerosis. Acta Psych. Neurol. Scand. (suppl. 128) 34:13–14.

    Google Scholar 

  7. Caspary, E. A., Sewell, F., andField, E. J. 1967. Red blood cell fragility in multiple sclerosis. Brit. Med. J. 2:610–611.

    PubMed  Google Scholar 

  8. Stasiw, D. M., Rosato, S., Mazza, J., andCerny, L. C. 1977. Quantitative osmotic fragility and disease states: a preliminary study. J. Lab. Clin. Med. 89:409–413.

    PubMed  Google Scholar 

  9. Schauf, C. L., Frischer, H., andDavis, F. A. 1980. Mechanical fragility of erythrocytes in multiple sclerosis. Neurology 30:323–325.

    PubMed  Google Scholar 

  10. Field, E. J., Joyce, G., andSmith, B. M. 1977. Erythrocyte-UFA (EUFA) mobility test for multiple sclerosis: Implications for pathogenesis and handling of the disease. J. Neurol. 214:113–127.

    PubMed  Google Scholar 

  11. Field, E. J., andJoyce, G. 1976. Simplified laboratory test for multiple sclerosis. Lancet ii Aug 14:367–368.

    Google Scholar 

  12. Tappel, A. L. 1978. Protection against free radical lipid peroxidation reactions. Adv. Exp. Med. Biol. 97:111–131.

    PubMed  Google Scholar 

  13. McCay, P. B. 1981. Physiological significance of lipid peroxidation Fed. Proc. 40:173.

    Google Scholar 

  14. Hunter, M. I. S., Brzeski, M. S., andde Vane, P. J. 1981. Superoxide dismutase, glutathione peroxidase and thiobarbituric acid-reactive compounds in erythrocytes in Duchenne muscular dystrophy. Clin. Chim. Acta 115:93–98.

    PubMed  Google Scholar 

  15. Halliwell, B. 1982. Superoxide and superoxide-dependent formation of hydroxyl radicals are important in oxygen toxicity. Trends Biochem. Sci. 7:270–272.

    Google Scholar 

  16. Swank, R. L. 195 Multiple sclerosis: A correlation of its incidence with dietary fat. Am. J. Med. Sci. 220:421–430.

    Google Scholar 

  17. Sinclair, H. M. 1956. Deficiency of essential fatty acids and atherosclerosis etc. Lancet i:381–383.

    Google Scholar 

  18. Mertin, J., andMeade, C. J. 1977. Relevance of fatty acids in multiple sclerosis. Brit. Med. Bull. 33:67–71.

    PubMed  Google Scholar 

  19. Yu, R. K., Ueno, K., Glaser, G. H., andTourtellotte, W. W. 1982. Lipid and protein alterations of spinal cord and cord myelin of multiple sclerosis. J. Neurochem. 39:464–477.

    PubMed  Google Scholar 

  20. Woelk, H., andBorri, P. 1973. Lipid and fatty acid composition of myelin purified from normal and MS brains. Eur. Neurol. 10:250–260.

    PubMed  Google Scholar 

  21. Gopfert, E., Pytlik, S., andDebuch, H. 1980. 2′. 3′-Cyclic nucleotide 3′-phosphohydrolase and lipids of myelin from multiple sclerosis and normal brains. J. Neurochem. 34:732–739.

    PubMed  Google Scholar 

  22. Kobayashi, T., Mawatari, S., andKuroiwa, Y. 1978. Lipids and proteins of erythrocyte membrane in Duchenne muscular dystrophy. Clin. Chim. Acta 85:259–266.

    PubMed  Google Scholar 

  23. Mickel, H. S. 1975. Multiple sclerosis: a new hypothesis. Perspect. Biol. Med. 18:363–374.

    PubMed  Google Scholar 

  24. Wickstrom, J., Westermarck, T., andPalo, J. 1976. Selenium, vitamin E and copper in multiple sclerosis. Acta Neurol. Scand. 54:287–290.

    PubMed  Google Scholar 

  25. Thompson, R. H. S. 1975. Unsaturated fatty acids in multiple sclerosis. Pages 184–191,in Davison, A. N., Humphrey, J. H., Liversedge, L. A., McDonald, W. I., andPorterfield, J. S. (eds.). Multiple sclerosis research. HMSO: London.

    Google Scholar 

  26. Rogovina, N. I. andKoklov, A. P. 1980. Metabolism of lipid peroxidation products in multiple sclerosis patients. Zh. Nevropatol. Paikhiatr. Im. S. S. Korsakova 80:696–700.

    Google Scholar 

  27. Shukla, V. K. S., Jensen, G. E. &Clausen, J. 1977. Erythrocyte glutathione peroxidase deficiency in multiple sclerosis. Acta Neurol. Scand. 56:542–550.

    PubMed  Google Scholar 

  28. Szeinberg, A., Golan, R., Ezzer, J. B., Sarova-Pinhas, I., Sadeh, M. andBraham, J. 1978. Decreased erythrocyte glutathione peroxidase activity in multiple sclerosis. Acta. Neurol. Scand. 60:265–271.

    Google Scholar 

  29. Szeinberg, A., Golan, R., Ben-Ezzer, J., Sarova-Pinhas, I., andKindler, D. 1981. Glutathione peroxidase activity in various types of blood cell in multiple sclerosis. Acta Neurol. Scand. 63:67–75.

    PubMed  Google Scholar 

  30. Jensen, G. E., Gissel-Neilsen, G., andClausen, J. 1980. Leukocyte glutathione peroxidase E.C. 1.11.1.9 activity and selenium level in multiple sclerosis. J. Neurol. Sci. 48:61–68.

    PubMed  Google Scholar 

  31. James, P. B. 1982. Evidence for subacute fat embolism as the cause of multiple sclerosis. Lancet i Feb 13:380–386.

    Google Scholar 

  32. Fischer, B. H., Marks, M., andReich, T. 1983. Hyperbaric oxygen treatment of multiple sclerosis: a randomized, placebo controlled double blind study. N. Engl. J. Med 308:181–186.

    PubMed  Google Scholar 

  33. Fridovich, I. 1979. Superoxide dismutases: defence against endogenous superoxide radical. Pages 81–82.in: Oxygen free radicals and tissue damage. CIBA Foundation Symp. 65:

  34. Hunter, M. I. S., andAmin, K. 1983. Red cell catalase and glutathione reductase in Duchenne muscular dystrophy. IRCS Med. Sci. 11:341–342.

    Google Scholar 

  35. Stocks, J., andDormandy, T. L. 1971. The autoxidation of human red cell lipids induced by hydrogen peroxide. Br. J. Haematol. 20:95–111.

    PubMed  Google Scholar 

  36. Hopkins, J., andTudhope, G. R. 1973. Glutathione peroxidase in health and disease. Brit. J. Haematol. 25:563–575.

    Google Scholar 

  37. Beutler, E., Blume, K. G., Kaplan, J. C., Lohr, G. W., Ramot, B., andValentine, W. N. 1977. International committee for standardization in haemotology: recommended methods for red cell enzyme analysis. Brit. J. Haematol. 35:331–340.

    Google Scholar 

  38. Das, S. K., andNair, R. C. 1980. Superoxide dismutase, glutathione peroxidase, catalase and lipid peroxidation of normal and sickled erythrocytes. Brit. J. Haemotol. 44:87–92.

    Google Scholar 

  39. Mehlert, A., Metcalfe, A., Diplock, A. T., andHughes, R. A. C. (1982) Glutathione peroxidase deficiency in multiple sclerosis. Acta Neurol. Scand. 65:376–378.

    PubMed  Google Scholar 

  40. Clements, J. E., andAnderson, B. B. 1980. Glutathione reductase activity and pyridoxine (pyridoxamine) phosphate oxidase activity in the red cell. Biochim. Biophys. Acta 632:159–163.

    PubMed  Google Scholar 

  41. Beutler, E. 1974. Glutathione reductase Pages, 109–112;in:Flohe, L. et al., (eds.) Proc. 16th Conf. German Soc. Biol. Chem. Thieme: Stuttgart.

    Google Scholar 

  42. Sinet, P.-M., Lejeune, J., andJerome, H. 1979. Trisomy 21 (Down's syndrome) gluthathione peroxidase, hexose monophosphate shunt and I. Q. Life Sci. 24:29–34.

    PubMed  Google Scholar 

  43. Crapo, J. D., andMcCord, J. M. 1976. Oxygen-induced changes in pulmonary superoxide dismutase assayed by antibody titrations. Am. J. Physiol. 231:1196–1203.

    PubMed  Google Scholar 

  44. Vanella, A., Pinturo, R., Grimaldi, R., Tiriolo, P., Di Silvestro, I., Grasso, M., D'Urso, G., andGeremia, E. 1981. Superoxide dismutase activities in rat brain: effect of hyperoxia. IRCS Med. Sci. 9:144–145.

    Google Scholar 

  45. Somayajulu, R. S. N., Mukherjee, S. P., Lynn, W. S., andBennett, P. B. 1978. Pulmonary oxygen toxicity in chickens and rabbits. Undersea Biomed. Res. 5:1–8.

    PubMed  Google Scholar 

  46. Noda, Y., McGeer, P. L., andMcGeer, E. G. 1983. Lipid peroxide distribution in brain and the effect of hyperbaric oxygen. J. Neurochem. 40:1329–1332.

    PubMed  Google Scholar 

  47. Hilton, J. G., Brown, G. L., andProctor, P. H. 1980. Nervous system toxicity of hyperbaric oxygen. Toxicol. Appl. Pharmacol. 53:50–53.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunter, M.I.S., Lao, M.S., Burtles, S.S. et al. Erythrocyte antioxidant enzymes in multiple sclerosis and the effect of hyperbaric oxygen. Neurochem Res 9, 507–516 (1984). https://doi.org/10.1007/BF00964377

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964377

Keywords

Navigation