Skip to main content
Log in

Cellular changes in bone marrow of malaria-infected mice

III. Chemotaxis of Granulocytes

  • Original Investigations
  • Published:
Zeitschrift für Parasitenkunde Aims and scope Submit manuscript

Abstract

The number of bone marrow cells and their chemotactic activity was studied during malaria infection. Two days after infection of Balb/c mice withPlasmodium berghei, an increase in granulocyte number was observed in the blood. A modified Boyden chamber chemotaxis assay was employed to investigate the mechanism of granulocyte accumulation in the blood. Bone marrow cells from normal mice, from mice during a primary lethal infection and from immune mice after challenge were compared. The complement factor C5a showed chemotactic activity for bone marrow cells; a significant decrease of chemotaxis was only observed after 6 days of primary infection. Extracts of spleen, liver and infected erythrocytes lacked chemotactic activity, or caused inhibition of cell migration. Serum from mice with a 2-day primary infection contained chemotactic activity. The active component was heat labile, protease sensitive and had an estimated molecular weight of 250,000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Athens JW (1970) Neutrophilic granulocyte kinetics and granulocytopoiesis. In: Gordon AS (ed) Regulation of Hematopoiesis. Appleton Century-Crofts, New York, 2:1143–1166

    Google Scholar 

  • Cline MJ, Golde DW (1979) Controlling the production of red cells. Blood 53:157–165

    Google Scholar 

  • Craddock CG Jr, Perry S, Veutzke LE, Lawrence JS (1960) Evaluation of marrow granulocyte reserves in normal and disease states. Blood 15:840–855

    Google Scholar 

  • Dale DC, Wolff SM (1973) Studies of the neutropenia of acute malaria. Blood 41:197–206

    Google Scholar 

  • De Chatelet LR (1979) Phagocytosis by human neutrophils. In: Gadebusch HH (ed) Phagocytes and cellular immunity. CRC Press, Inc, pp 1–56

  • Frankenburg S, Greenblatt CL (1978) Cellular changes in the bone marrow ofPlasmodium berghei-infected mice. Isr J Med Sci 14:582–589

    Google Scholar 

  • Frankenburg S, Londner MV, Greenblatt CL (1980) Cellular changes in the bone marrow ofPlasmodium berghei-infected mice. II. Blast transformation and phagocytosis. Cell Immunol 55:185–190

    Google Scholar 

  • Kretschmar W, Jerusalem Ch (1963) Milz and malaria. Der Infektionsverlauf (Plasmodium berghei) in splenektomierten NMR-Mäusen und seine Deutung anhand der histopathologischen veränderungen der Milz nichtsplenektomierter Mäuse. Z Tropenmed Parasitol 14:279–310

    Google Scholar 

  • Playfair JHL, De Souza JB, Dockrell HM, Agomo PU, Taverne J (1979) Cell-mediated immunity in the liver of mice vaccinated against malaria. Nature 282:731–734

    Google Scholar 

  • Rencricca NJ, Coleman RM (1979) Altered erythropoiesis during the course of virulent murine malaria. Proc Soc Exp Biol Med 162:424–428

    Google Scholar 

  • Schiffman E, Gallin JI (1979) Biochemistry of phagocyte chemotaxis. In: Horecker BL, Stadtman ER (eds) Current topics in cellular regulation. Academic Press 15:203–261

  • Snyderman R, Altman LC, Hausman MS, Mergenhagen SE (1972) Human mononuclear leukocyte chemotaxis: A quantitative assay for humoral and cellular chemotactic factors. J Immunol 108:857–861

    Google Scholar 

  • Snyderman R, Phillips JK, Mergenhagen SE (1971) Biological activity of complement in vivo. Role of C5 in the accumulation of polymorphonuclear leukocytes in inflammatory exudates. J Exp Med 134:1131–1143

    Google Scholar 

  • Srichaikul T, Panikbutr N, Jeumtrakul P (1965) Bone-marrow changes in human malaria. Ann Trop Med Parasitol 61:40–51

    Google Scholar 

  • Ward PA (1971) Complement-derived leukotactic factors in pathological fluids. J Exp Med 134:109s-113s

    Google Scholar 

  • Wasserman SI, Goetzl EJ, Ellman L, Austen KF (1974) Tumor-associated eosinophilotactic factor. N Engl J Med 290:420–424

    Google Scholar 

  • Weissberger H, Golenser J, Spira DT (1979) Soluble antigens released in vitro from erythrocytes infected withPlasmodium berghei. Bull WHO 57:Suppl 1, 483

    Google Scholar 

  • Wyler DJ, Gallin JI (1977) Spleen derived mononuclear cell chemotactic factor in malaria infections: A possible mechanism for splenic macrophage accumulation. J Immunol 118:478–484

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frankenburg, S., Londner, M.V. & Greenblatt, C.L. Cellular changes in bone marrow of malaria-infected mice. Z. Parasitenkd. 68, 39–45 (1982). https://doi.org/10.1007/BF00926656

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00926656

Keywords

Navigation