Skip to main content
Log in

The yeastKluyveromyces lactis as an efficient host for heterologous gene expression

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Several different yeast species have been developed into systems for efficient heterologous gene expression. In this paper we review foreign gene expression in the dairy yeastKluyveromyces lactis. This yeast presents several advantageous properties in comparison to other yeast species. These include its impressive secretory capacities, its excellent fermentation characteristics on large scale, its food grade status and the availability of both episomal and integrative expression vectors. Moreover, in contrast to the methylotrophic yeasts that are frequently used for the expression of foreign genes,K. lactis does not require explosion-proof fermentation equipment. Here, we present an overview of the available tools for heterologous gene expression inK. lactis (available promoters, vector systems, etc). Also, the production of prochymosin, human serum albumin and pancreatic phospholipase byK. lactis is discussed in more detail, and used to rate the achievements ofK. lactis with respect to other micro-organisms in which these proteins have been produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Annonimus (1992) Chymosin fromK. lactis, GRAS affirmed. Fed. Reg. 57: 6476–6479

  • Archer DB, MacKenzie DA, Jeenes DJ, Roberts IN (1992) Proteolytic degradation of heterologous proteins expressed inAspergillus niger. Biotechnol. Lett. 14: 357–362

    Google Scholar 

  • Barr KA, Hopkins SA & Sreekrishna K (1992) Protocol for efficient secretion of HSA developed from Pichia pastoris. Pharm. eng. 12 (2): 48–51

    Google Scholar 

  • Bekkers ACAPA, Franken PA, van den Bergh CJ, Verbakel JMA, Verheij HM & de Haas GH (1991) The use of genetic engineering to obtain efficient production of porcine pancreatic phospholipase A2 bySaccharomyces cerevisiae. Biochym. Biophys. Acta 1089: 345–351

    Google Scholar 

  • van den Berg JA, van der Laken KJ, van Ooyen AJJ, Renniers TCHM, Rietveld K, Schaap A, Brake AJ, Bishop RJ, Schultz K, Moyer D, Richman M & Shuster JR (1990)Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin. Bio/Technol. 8: 135–139

    Google Scholar 

  • Bergkamp RJM, Geerse RH, Verbakel JMA, Musters W & Planta RJ (1991) Cloning and disruption of theLEU2 gene ofKluyveromyces marxianus CBS 6556. Yeast 7: 963–970

    PubMed  Google Scholar 

  • Bergkamp RJM, Kool IM, Geerse RH & Planta RJ (1992) Multiple-copy integration of the α-galactosidase gene fromCyanopsis tetragonoloba into the ribosomal DNA ofKluyveromyces lactis. Curr. Genet. 21: 365–370

    PubMed  Google Scholar 

  • Bianchi MM, Falcone C, Chen XJ, Weslowski-Louvel M, Frontali L & Fukuhara H (1987) Transformation of the yeastKluyveromyces lactis by new vectors derived from the 1.6 µm circular plasmid pKD1. Curr. Genet. 12: 185–192

    Google Scholar 

  • Bianchi MM, Santarelli R & Frontali L (1991) Plasmid functions involved in the stable propagation of the pKD1 circular plasmid inKluyveromyces lactis. Curr. Genet. 19: 155–161

    PubMed  Google Scholar 

  • Bonekamp AJ, & Oosterom J (1993) On the safety ofKluyveromyces lactis: a review. Appl. Microbiol. Biotechnol. in press.

  • Breunig KD & Kuger P (1987) Functional homology between the yeast regulatory proteins GAL4 and LAC9:LAC9-mediated transcriptional activation inKluyveromyces lactis involves protein binding to a regulatory sequence homologous to the GAL4 protein-binding site. Mol. Cell. Biol. 7: 4400–4406

    PubMed  Google Scholar 

  • Breunig KD (1989a) Glucose repression of LAC gene expression in yeast is mediated by the transcriptional activator LAC9. Mol. Gen. Genet. 216: 422–427

    PubMed  Google Scholar 

  • Breunig KD (1989b) Multicopy plasmids containing the gene for the transcriptional activatorLAC9 are not tolerated byK. lactis cells. Curr. Genet. 15: 143–148

    PubMed  Google Scholar 

  • Chang Y-D & Dickson RC (1988) Primary structure of the lactose permease gene from the yeastKluyveromyces lactis. J. Biol. Chem. 263: 16696–16703

    PubMed  Google Scholar 

  • Chen XJ, Saliola M, Falcone C, Bianchi MM & Fukuhara H (1986) Sequence organization of the circular plasmid pKD1 from the yeastKluyveromyces drosophilarum. Nucleic Acids Res. 14: 4471–4481

    PubMed  Google Scholar 

  • Chen XJ, Bianchi MM, Suda K & Fukuhara H (1989) The host range of the pKD1-derived plasmids in yeast. Curr. Genet.16: 95–98

    PubMed  Google Scholar 

  • Chen XJ, Fleer R & Fukuhara H (1992) Vecteurs de clonage et/ou d'expression preparation et utilisation. European Patent Application 0519829

  • Da Silva NA & Bailey JE (1991a) Influence of dilution rate and induction of cloned gene expression in continuous fermentation of recombinant yeast. Biotechnol. Bioeng. 37: 309–317

    Google Scholar 

  • Da Silva NA & Bailey JE (1991b) Influence of plasmid origin and promoter strength in fermentations of recombinant yeast. Biotechnol. Bioeng. 37: 318–324

    Google Scholar 

  • Das S & Hollenberg CP (1982) A high-frequency transformation system for the yeastKluyveromyces lactis. Curr. Genet. 6: 123–128

    Google Scholar 

  • Das S, Breunig KD & Hollenberg CP (1985) A positive regulatory element is involved in the induction of the ß-galactosidase gene fromKluyveromyces lactis. EMBO J. 4: 793–798

    PubMed  Google Scholar 

  • Dickson RC & Markin JS (1978) Molecular cloning and expression inEscherichia coli of a yeast gene coding for ß-galactosidase. Cell 15: 123–130

    PubMed  Google Scholar 

  • Dickson RC & Markin JS (1980) Physiological studies of ß-galactosidase induction inKluyveromyces lactis. J. Bacteriol. 142: 777–785

    PubMed  Google Scholar 

  • Dunn-Coleman NS, Bloebaum P, Berka RM, Bodie E, Robinson N, Armstrong G, Ward M, Przetak M, Carter GL, LaCost R, Wilson LJ, Kodama KH, Baliu EF, Bower B, Lamsa M & Heinsohn H (1991) Commercial levels of chymosin production byAspergillus. Bio/Technol. 9: 976–981

    Google Scholar 

  • Falcone C, Saliola M, Chen XJ, Frontali L & Fukuhara H (1986) Analysis of a 1.6 µm circular plasmid from the yeastKluyveromyces drosophilarum: structure and molecular dimorphism. Plasmid 15: 248–252

    PubMed  Google Scholar 

  • Falcone C, Fleer R & Saliolo M (1993) Yeast promoter and use thereof. PCT Patent Application WO 9304176

  • Ferbeyre G, Martinez E, Torrens I, Aguiar J, Villarreal A, Gonzales T, Silva A & Morales J (1991) Secrecion de renina de hongo recombinante enKluyveromyces lactis. Biotecnologia Aplicada 8: 335–344

    Google Scholar 

  • Fleer R, Yeh P, Ammellal N, Maury I, Fournier A, Bacchetta F, Baduel P, Jung G, L'Hôte H, Becquart J, Fukuhara H & Mayaux JF (1991a) Stable multicopy vectors for high-level secretion of recombinant human serum albumin byKluyveromyces yeasts. Bio/Technol. 9: 968–975

    Google Scholar 

  • Fleer R, Chen XJ, Amellal N, Yeh P, Fournier A, Guinet F, Gault N, Faucher D, Folliard F, Fukuhara H & Mayaux JF (1991b) High-level secretion of correctly processed recombinant interleukin-1ß inKluyveromyces lactis. Gene 107: 285–295

    PubMed  Google Scholar 

  • Fleer R (1992) Engineering yeast for high level expression. Curr. Opinion Biotechnol. 3: 486–496

    Google Scholar 

  • Fleer R, Fournier A & Yeh P (1993a) Procédé de production de protéine recombinantes et cellules hôtes utilisées. European Patent Application EP-521767 A

  • Fleer R, Fournier A & Yeh P (1993b) Highly stable recombinant yeasts for the production of recombinant proteins. PCT Patent Application WO 9303159

  • Foltman B (1970) Prochymosin and chymosin (prorennin and rennin). Methods Enzymol. 19: 421–436

    Google Scholar 

  • Fournier A, L'Hôte H, Bianchi M, Yeh P, Amellal N, Bacchetta F, Quiles E, Maury I, Baduel P, Jung G, Frontali L & Fleer R (1991) Optimization of the mitotic stability of pKD1 based expression vectors. 4th meeting on the biology ofKluyveromyces, Düsseldorf (Germany), September 21–22, 1991 (Abstract)

  • Gellissen G, Weydemann U, Strasser AWM, Piontek M, Janowicz ZA & Hollenberg CP (1992) Progress in developing methylotrophic yeasts as expression systems. Trends Biotechnol. 10: 413–417

    PubMed  Google Scholar 

  • de Geus P, van den Bergh CJ Kuipers O, Verheij HM, Hoekstra WPM & de Haas GH (1987) Expression of porcine pancreatic phospholipase A2. Generation of active enzyme by sequence-specific cleavage of a hybrid protein fromEscherichia coli. Nucleic Acids Res. 15: 3743–3759

    PubMed  Google Scholar 

  • Gödecke A, Zachariae W, Arvanitidis A & Breunig KD (1991) Coregulation of theKluyveromyces lactis lactose permease and ß-galactosidase genes is achieved by interaction of multiple LAC9 binding sites in a 2.6 kbp divergent promoter. Nucleic Acids Res. 19: 5351–5358

    PubMed  Google Scholar 

  • Goffrini P, Algeri AA, Donnini C, Wesolowski-Louvel M & Ferrero I (1989) RAG1 and RAG2: nuclear genes involved in the dependence/independence on mitochondrial respiratory function for growth on sugars. Yeast 5: 99–105

    PubMed  Google Scholar 

  • Gunge N, Tamaru A, Ozawa F & Sakaguchi K (1981) Isolation and characterisation of linear deoxyribonucleic acid plasmids fromKluyveromyces lactis and th plasmid associated killer character. J. Bacteriol. 145: 382–390

    PubMed  Google Scholar 

  • Harkki A, Uusitalo J, Bailey M, Penttilä M. & Knowles JKC (1989) A novel fungal expression system: secretion of active calf chymosin from the filamentous fungusTrichoderma reesei. Bio/Technol. 7: 596–603

    Google Scholar 

  • He XM & Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358: 209–215

    PubMed  Google Scholar 

  • Heinsohn HG, Lorch JD, Hayenga K & Arnold RE (1992) Processes for the recovery of microbially produced chymosin. United States Patent US 5139943

  • Hitzeman RA, Chen CY, Dowbenko DJ, Renz ME, Liu C, Pai R, Simpson NJ, Kohr WJ, Singh A, Chisholm V, Hamilton R & Chang CN (1990) Use of heterologous and homologous signal sequences for secretion of heterologous proteins from yeast. Methods Enzymol. 185: 421–440

    PubMed  Google Scholar 

  • Hussein L, Elasyed S & Fod S (1989) Reduction of lactose in milk by purified lactase produced byKluyveromyces lactis. J. Food Prot. 52: 30–34

    Google Scholar 

  • Innis MA (1989) Glycosylation of heterologous proteins inSaccharomyces cerevisiae. In: Barr PJ, Brake AJ & Valenzuela P (Eds) Yeast Genetic Engineering (pp 233–246). Butterworths, Boston

    Google Scholar 

  • Jeans ERA, Marshall PJ & Lowe CR (1985) Plasma protein fraction. Trends Biotechnol. 3: 267–270

    Google Scholar 

  • Johnston M (1987) A model fungal gene regulatory mechanism: theGAL genes ofSaccharomyces cerevisiae. Microbiol. Rev. 51: 458–476

    PubMed  Google Scholar 

  • Jung G, Yeh P, Fleer R, Saliola M, Mazzoni C & Falcone C (1993) Utilization of the KIADH4 promoter for the regulated expression of heterologous genes in the yeastKluyveromyces lactis. 6th Meeting on Biology ofKluyveromyces, Siena (Italy), June 18–19, 1993 (Abstract)

  • Kämper J, Esser K, Gunge N & Meinhardt F (1991) Heterologous gene expression on the linear DNA killer plasmid fromKluyveromyces lactis. Curr. Genet. 19: 109–118

    PubMed  Google Scholar 

  • Kingsman SM, Kingsman AJ & Mellor J (1987) The production of mammalian proteins inSaccharomyces cerevisiae. Trends Biotechnol. 5: 53–57

    Google Scholar 

  • Latta M, Knapp M, Sarmientos P, Brefort G, Becquart J, Guerrier L, Jung G & Mayaux J.-F (1987) Synthesis and purification of mature human serum albumin fromE. coli. Bio/Technol. 5: 1309–1314

    Google Scholar 

  • de Leeuw A & Swinkels BW (1993) De productie van chymosine met de gistKluyveromyces lactis. Voedingsmiddelen Technol., 16/17, 9–12

    Google Scholar 

  • Lopes TS, Klootwijk J, Veenstra AE, van der Aar PC, van Heerikhuizen H, Raué HA & Planta RJ (1989) High-copy-number integration into the ribosomal DNA ofSaccharomyces cerevisiae: a new vector for high-level expression. Gene 79: 199–206

    PubMed  Google Scholar 

  • Lopes TS, Hakkaart G-JAJ, Koerts BL, Raué HA & Planta RJ (1991) Mechanism of high-copy-number integration of pMIRY-type vectors into the ribosomal DNA ofSaccharomyces cerevisiae. Gene 105: 83–90

    PubMed  Google Scholar 

  • de Louvencourt L, Fukuhara H, Heslot H & Wesolowski M (1983) Transformation ofKluyveromyces lactis by killer plasmid DNA. J. Bacteriol. 154: 737–742

    PubMed  Google Scholar 

  • Marston FOA, Lowe PA, Doel MT, Schoemaker JM, White S & Angal S (1984) Purification of calf prochymosin from (prorennin) synthesized inE. coli. Bio/technol. 2:800–804

    Google Scholar 

  • Mazzoni C, Salioli M & Falcone C (1992) Ethanol induced and glucose insensitive activity in the yeastKluyveromyces lactis. Mol. Microbiol. 6: 2279–2286

    PubMed  Google Scholar 

  • McReadie IG, Horaitis O, Vaughan PR & Clark-Walker GD (1991) Constitutive expression of theSaccharomyces cerevisiae CUP1 gene inKluyveromyces lactis. Yeast 7: 127–135

    PubMed  Google Scholar 

  • Mellor J, Dobson MJ, Roberts NA, Tuite MF, Emtage JS, White S, Lowe PA, Patel T, Kingsman AJ & Kingsman SM (1983) Efficient synthesis of enzymatically active calf chymosin inSaccharomyces cerevisiae. Gene 24: 1–14

    PubMed  Google Scholar 

  • Okabayashi K, Nakagawa Y, Hayasuke N, Ohi H, Miura M, Ishida Y, Shimizu M, Murakami K, Hirabayashi K, Minamino H, Horii H, Masaki A, Sumi A, Ohmura T & Kawabe H (1991) Secretory expression of the human serum albumin gene in the yeast,Saccharomyces cerevisiae. J. Biochem. 110: 103–110

    PubMed  Google Scholar 

  • Randolph WF (1984) Direct food substance affirmed as generally recognized as safe; lactase enzyme preparation fromKluyveromyces lactis. Fed. Reg. 49 (234): 47384–47387

    Google Scholar 

  • Riley MI & Dickson RC (1984) Genetic and biochemical characterization of the galactose gene cluster inKluyveromyces lactis. J. Bacteriol. 158: 750–712

    Google Scholar 

  • Roberts IN, Jeenes DJ, MacKenzie DA, Wilkinson AP, Sumner IG & Archer DB (1992) Heterologous expression inAspergillus niger: a glucoamylase-porcine pancreatic prophospholipase A2 fusion protein is secreted and processed to yield mature enzyme. Gene 122: 155–161

    PubMed  Google Scholar 

  • Romanos MA, Scorer CA & Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8: 423–488

    PubMed  Google Scholar 

  • Rossolini GM, Riccio ML, Gallo E & Galeotti CL (1992)Kluyveromyces lactis rDNA as a target for multiple integration by homologous recombination. Gene 119: 75–81

    PubMed  Google Scholar 

  • Rothstein RJ (1983) One-step gene disruption in yeast. Methods Enzymol. 101: 202–211

    PubMed  Google Scholar 

  • Rothstein RJ (1991) Targeting, disruption, replacement and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194: 281–301

    PubMed  Google Scholar 

  • Saunders CW, Schmidt BJ, Mallonee RL & Guyer MS (1987) Secretion of human serum albumin fromBacillus subtilus. J. Bacteriol. 169: 2917–2925

    PubMed  Google Scholar 

  • Shuster JR, Moyer D & Irvine B (1987) Sequence of theKluyveromyces lactis URA3 gene. Nucleic Acids Res. 15: 8573

    PubMed  Google Scholar 

  • Sleep D, Belfield GP & Goodey AR (1990) The secretion of human serum albumin from the yeastSaccharomyces cerevisiae using five different leader sequences. Bio/Technol. 8: 42–46

    Google Scholar 

  • Sleep D, Belfield GP, Ballance DJ, Steven J, Jones S, Evans LR, Moir PD & Goodey AR (1991)Saccharomyces cerevisiae strains that overexpress heterologous proteins. Bio/Technol. 9: 183–187

    Google Scholar 

  • Smith RA, Duncan MJ & Moir DT (1985) Heterologous protein secretion from yeast. Science 229: 1219–1224

    PubMed  Google Scholar 

  • Sreekrishna K, Webster TD & Dickson RC (1984) Transformation ofKluyveromyces lactis with the kanamycin (G418) resistance gene of Tn903. Gene 28: 73–81

    PubMed  Google Scholar 

  • Stark MJR & Milner JS (1989) Cloning and analysis of theKluyveromyces lactis TRPI gene: a chromosomal locus flanked by genes encoding inorganic pyrophosphatase and histone H3. Yeast 5: 35–50

    PubMed  Google Scholar 

  • Stark MJR, Boyd A, Mileham AJ & Romanos MA (1990) The plasmid encoded killer system ofKluyveromyces lactis: a review. Yeast 6: 1–29

    Google Scholar 

  • Steensma HY, de Jongh FCM & Linnekamp M (1988) The use of electrophoretic karyotypes in the classification of yeasts:Kluyveromyces marxianus andK. lactis. Curr. Genet. 14: 311–317

    Google Scholar 

  • Strasser AWM, Selk R, Dohmen RJ, Niermann T, Bielefeld M, Seeboth P, Tu G & Hollenberg CP (1989) Analysis of the α-amylase gene ofSchwanniomyces occidentalis and secretion of its gene product in transformants of different genera. Eur. J. Biochem. 184: 699–706

    PubMed  Google Scholar 

  • Tichy PJ, Kapralak F & Jecmen P (1993) Improved procedure for a high-yield recovery of enzymatically active recombinant calf chymosin fromEscherichia coli inclusion bodies. Protein Expression and Purification 4: 59–63

    PubMed  Google Scholar 

  • Vrignaud Y (1971) Levure lactique. Rev. Institut Pasteur Lyon 4 (2): 147–165

    Google Scholar 

  • Wada K, Wada Y, Ishibashi F, Gojobori T & Ikemura T (1992) Codon usage tabulated from the Genbank genetic sequence data. Nucleic Acids Res. 20: 2111–2118

    PubMed  Google Scholar 

  • van der Walt JP (1970) Genus 8.Kluyveromyces van der Walt emend. van der Walt. in: Lodder J (Ed) The Yeasts (pp 316–352). North-Holland Publ. Comp., Amsterdam

    Google Scholar 

  • van der Walt JP & Johannson E (1984) Genus 13.Kluyveromyces van der Walt emend. van der Walt. In: Kreger-van Rij NJW (Ed) The Yeasts (pp 224–251). Elsevier Science Publ., Amsterdam

    Google Scholar 

  • Ward M, Wilson LJ, Kodama KH, Rey MW & Berka RM (1990) Improved production of chymosin by expression as a glucoamylase-chymosin fusion. Bio/Technol. 8: 435–440

    Google Scholar 

  • Wesolowski M, Algeri A & Fukuhara H (1982) Killer DNA plasmids of the yeastKluyveromyces lactis. I Mutations affecting killer phenotype. Curr. Genet. 5: 191–197

    Google Scholar 

  • Wray LV, Witte MM, Dickson RC & Riley MI (1987) Characterization of a positive regulatory gene,LAC9, that controls induction of the lactose/galactose regulon ofKluyveromyces lactis: structural and functional relationships toGAL4 ofSaccharomyces cerevisiae. Mol. Cell. Biol. 7: 1111–1121

    PubMed  Google Scholar 

  • Yonezawa M, Suzuki J, Nishiyama M, Horinouchi S & Beppu T (1993) Role of the amino-terminal amino acid sequences determining the in vitro refolding process of prochymosin polypeptide. J. Biotechnol. 28: 85–97

    PubMed  Google Scholar 

  • Zachariae W, Kuger P & Breunig KD (1993) Glucose repression of lactose/galactose metabolism inKluyveromyces lactis is determined by the concentration of the transcriptional activator LAC9 (KlGAL4). Nucleic Acids Res. 21: 69–77

    PubMed  Google Scholar 

  • Zachariae W & Breunig KD (1993) Expression of the transcriptional activator LAC9 (KlGAL4) inKluyveromyces lactis is controlled by autoregulation. Mol. Cell. Biol. 13: 3058–3066

    PubMed  Google Scholar 

  • Zhang YP, Chen XJ & Fukuhara H (1992)LEU2 gene homolog inKluyveromyces lactis. Yeast 8: 801–804

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swinkels, B.W., van Ooyen, A.J.J. & Bonekamp, F.J. The yeastKluyveromyces lactis as an efficient host for heterologous gene expression. Antonie van Leeuwenhoek 64, 187–201 (1993). https://doi.org/10.1007/BF00873027

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00873027

Key words

Navigation