Skip to main content
Log in

A Finsler generalisation of Einstein's vacuum field equations

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

This paper gives a generalisation of Einstein's vacuum field equations for Finsler metrics. The given generalised field equation reproduces the Einstein equations for Riemannian metrics, and also admits non-Riemannian solutions. This is shown in detail by deriving a first order Finsler perturbation, solving the new field equation, of the Schwarzschild metric. This perturbation turns out to be time independent. The effects of the perturbation on the three Classical Tests of General Relativity are derived, and used to give limits on the size of the perturbation parameter involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riemann, G. F. B. (1854). “Über die Hypothesen welche der Geometrie zu Grunde liegen,” Habilitation thesis, University of Göttingen.

  2. Finsler, P. (1918). “Über Kurven und Flächen in Allgemeinen Räumen,” Dissertation, University of Göttingen.

  3. Cartan, É. (1934).Les Espaces de Finsler (Actualités 79, Paris).

  4. Berwald, L. (1947).Ann. Math. (2)48, 755.

    Google Scholar 

  5. Rund, H. (1959).The Differential Geometry of Finsler Spaces (Springer-Verlag, Berlin).

    Google Scholar 

  6. Matsumoto, M. (1986).Foundations of Finsler Geometry and Special Finsler Spaces (Kaiseisha Press, Shigaken).

    Google Scholar 

  7. Kilmister, D. A., and Stephenson, G. (1954).Nuovo Cimento 11, Suppl. 91, 118.

    Google Scholar 

  8. Asanov, G. S. (1979).Nuovo Cimento 49, 221; Bogoslovsky, G. Yu. (1977).Nuovo Cimento 40B, 99,116;id. (1992).Class. Quant. Grav. 9, 569; Ishikawa, H. (1981).J. Math. Phys. 22, 995; Matsumoto, M. (1975).Rep. Math. Phys. 8 103; Takano, Y. (1974).Lett. Nuovo Cimento 10, 747.

    Google Scholar 

  9. Roxburgh, I. W. (1992).Gen. Rel. Grav. 24, 419; Roxburgh, I. W., and Tavakol, R. K. (1979).Gen. Ret. Grav. 10, 307.

    Google Scholar 

  10. Tavakol, R. K., and Van der Bergh, N. (1986).Gen. Rel. Grav. 18, 849.

    Google Scholar 

  11. Pirani, F. A. E. (1965). In Lectures on General Relativity (Brandeis Summer Inst. in Theoretical Physics 1964) S. Deser and K. W. Ford, eds. (Prentice-Hall, Englewood Cliffs, N.J.), vol. 1, lecture 2.

    Google Scholar 

  12. Carathéodory, C. (1935).Variationsrechnung und partielle Differentialgleichungen erster Ordnung (Teubner Press, Leipzig).

    Google Scholar 

  13. Rutz, S. F., McCarthy, P. J. (1993).Gen. Rel. Grav. 25, 179.

    Google Scholar 

  14. Hearn, A. (1991). REDUCEUser's Manual, version 3.4 (Rand Corporation, Santa Monica, California).

    Google Scholar 

  15. Rutz, S. F. (1993). “Symmetry and Gravity in Finsler Spaces”, PhD thesis, Queen Mary & Westfield College, University of London.

  16. McCarthy, P. J., Rutz, S. F. (1993).Gen. Rel. Grav. 25, 589.

    Google Scholar 

  17. Landau, L. D., and Lifshitz, E. M. (1962).The Classical Theory of Fields (2nd. revised ed., Pergamon, Oxford).

    Google Scholar 

  18. Weinberg, S. (1972).Gravitation and Cosmology (Wiley, New York).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutz, S.F. A Finsler generalisation of Einstein's vacuum field equations. Gen Relat Gravit 25, 1139–1158 (1993). https://doi.org/10.1007/BF00763757

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00763757

Keywords

Navigation