Skip to main content
Log in

SecA protein: Autoregulated initiator of secretory precursor protein translocation across theE. coli plasma membrane

  • Mini-Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Several classes ofsecA mutants have been isolated which reveal the essential role of this gene product forE. coli cell envelope protein secretion. SecA-dependent,in vitro protein translocation systems have been utilized to show that SecA is an essential, plasma membrane-associated, protein translocation factor, and that SecA's ATPase activity appears to play an essential but as yet undefined role in this process. Cell fractionation studies suggested that SecA protein is in a dynamic state within the cell, occurring in soluble, peripheral, and integral membraneous states. These data have been used to argue that SecA is likely to promote the initial insertion of secretory precursor proteins into the plasma membrane in a manner dependent on ATP hydrolysis. The protein secretion capability of the cell has been shown to translationally regulatesecA expression with SecA protein serving as an autogenous repressor, although the exact mechanism and purpose of this regulation need to be defined further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyama, M., Horiuchi, T., and Sekiguchi, M. (1987).Mol. Gen. Genet. 206, 9–16.

    Google Scholar 

  • Akiyama, Y., and Ito, K. (1987a).EMBO J. 4, 3351–3356.

    Google Scholar 

  • Akiyama, Y., and Ito, K. (1987b)EMBO J. 6, 3465–3470.

    Google Scholar 

  • Baker, K., Mackman, N., Jackson, M., and Holland, I. B. (1987).J. Mol. Biol. 198, 693–703.

    Google Scholar 

  • Bankaitis, V. A., and Bassford, P. J. (1985).J. Bacteriol. 161, 169–178.

    Google Scholar 

  • Beall, B., and Lutkenhaus, J. (1987).J. Bacteriol. 169, 5408–5415.

    Google Scholar 

  • Beckwith, J., and Ferro-Novick, S. (1986).Curr. Top. Microbiol. Immunol. 125, 5–27.

    Google Scholar 

  • Bernstein, H. D., Rapoport, T. A., and Walter, P. (1989).Cell 58, 1017–1019.

    Google Scholar 

  • Bhatnagar, S. K., and Bessman, M. J. (1988).J. Biol. Chem. 263, 8953–8957.

    Google Scholar 

  • Blobel, G., and Sabatini, D. D. (1971).Biomembranes 2, 193–195.

    Google Scholar 

  • Brickman, E. R., Oliver, D. B., Garwin, J. L., Kumamoto, C., and Beckwith, J. (1984).Mol. Gen. Genet. 196, 24–27.

    Google Scholar 

  • Brown, S., Brickman, E. R., and Beckwith, J. (1981).J. Bacteriol. 146, 422–425.

    Google Scholar 

  • Cabelli, R. J., Chen, L., Tai, P. C., and Oliver, D. B. (1988).Cell 55, 683–692.

    Google Scholar 

  • Chen, L., and Tai, P. (1985).Proc. Natl. Acad. Sci. USA 82, 4384–4388.

    Google Scholar 

  • Chen, L., and Tai, P. (1987).Nature (London)328, 164–166.

    Google Scholar 

  • Chin, D. T., Goff, S. A., Webster, T., Smith, T., and Goldberg, A. L. (1988).J. Biol. Chem. 263, 11718–11728.

    Google Scholar 

  • Cobet, W., Mollay, C., Müller, G., and Zimmermann, R. (1989).J. Biol. Chem. 264, 10169–10176.

    Google Scholar 

  • Cunningham, K., and Wickner, W. (1989).Proc. Natl. Acad. Sci. USA 86, 8630–8634.

    Google Scholar 

  • Cunningham, K., Lill, R., Crooke, E., Rice, M., Moore, K., Wickner, W., and Oliver, D. (1989).EMBO J. 8, 955–959.

    Google Scholar 

  • de Cock, H., Meeldijk, J., Overduin, P., Verkleij, A., and Tommassen, J. (1989).Biochem. Biophy. Acta 985, 313–319.

    Google Scholar 

  • de Vrije, T., de Swart, R. L., Dowham, W., Tommassen, J., and de Kruijff, B. (1988).Nature (London)334, 173–175.

    Google Scholar 

  • Emr, S. D., Hanley-Way, S., and Silhavy, T. J. (1981).Cell 23, 79–88.

    Google Scholar 

  • Fandl, J. P., and Tai, P. C. (1987).Proc. Natl. Acad. Sci. USA 84, 7448–7452.

    Google Scholar 

  • Fandl, J. P., Cabelli, R., Oliver, D., and Tai, P. C. (1988).Proc. Natl. Acad. Sci. USA 85, 8953–8957.

    Google Scholar 

  • Ferro-Novick, S., Honma, M., and Beckwith, J. (1984).Cell 38, 211–217.

    Google Scholar 

  • Fikes, J. D., and Bassford, P. J., Jr. (1989).J. Bacteriol. 171, 402–409.

    Google Scholar 

  • Gardel, C., Benson, S., Hunt, J., Michaelis, S., and Beckwith, J. (1987).J. Bacteriol. 169, 1286–1290.

    Google Scholar 

  • Garwin, J., and Beckwith, J. (1982).J. Bacteriol. 149, 789–792.

    Google Scholar 

  • Gebert, J., Overhoff, B., Manson, M., and Boos, W. (1988).J. Biol. Chem. 263, 16652–16660.

    Google Scholar 

  • Gerlach, J. H., Endicott, J. A., Juranka, P. F., Henderson, G., Sarangi, F., Derchars, K. L., and Ling, V. (1986).Nature (London)324, 485–489.

    Google Scholar 

  • Hayashi, S., and Wu, H. C. (1985).J. Bacteriol. 161, 949–954.

    Google Scholar 

  • Heacock, P., and Dowhan, W. (1989).J. Biol. Chem. 264, 14972–14977.

    Google Scholar 

  • Kobayashi, H., and Anraku, Y. (1972).J. Biochem. (Tokyo)71, 387–399.

    Google Scholar 

  • Kuhn, A. (1988).Eur. J. Biochem. 177, 267–271.

    Google Scholar 

  • Kumamoto, C. A., Oliver, D. B., and Beckwith, J. (1984).Nature (London)308, 863–864.

    Google Scholar 

  • Kumamoto, C. A., Chen, L., Fandl, J., and Tai, P. C. (1989).J. Biol. Chem. 264, 2242–2249.

    Google Scholar 

  • Lederberg, J. (1950).J. Bacteriol. 59, 211–215

    Google Scholar 

  • Lee, C. A., and Beckwith, J. (1986).J. Bacteriol. 166, 878–883.

    Google Scholar 

  • Lill, R., Cunningham, K., Brundage, L., Ito, K., Oliver, D., and Wickner, W. (1989).EMBO J. 8, 961–966.

    Google Scholar 

  • Lill, R., Dowhan, W., and Wickner, W. (1990).Cell 60, 271–280.

    Google Scholar 

  • Liss, L. R., and Oliver, D. B. (1986).J. Biol. Chem. 261, 2299–2303.

    Google Scholar 

  • Lutkenhaus, J., Wolf-Wietz, H., and Donachie, W. D. (1980).J. Bacteriol. 142, 615–620.

    Google Scholar 

  • Mackman, N., Baker, K., Gray, L., Haigh, R., Nicaud, J. M., and Holland, I. B. (1987).EMBO J. 6, 2835–2841.

    Google Scholar 

  • Noumi, T., Maeda, M., and Futai, M. (1987).FEBS Lett. 213, 381–384.

    Google Scholar 

  • Olins, P. O., and Rangwala, S. H. (1989).J. Biol. Chem. 264, 16973–16976.

    Google Scholar 

  • Oliver, D. (1985).J. Bacteriol. 161, 285–291.

    Google Scholar 

  • Oliver, D. B., and Beckwith, J. (1981).Cell 25, 765–772.

    Google Scholar 

  • Oliver, D. B., and Beckwith, J. (1982).Cell 30, 311–319.

    Google Scholar 

  • Randall, L. L., Hardy, S. J. S., and Thom, J. R. (1987).Annu. Rev. Microbiol. 41, 507–541.

    Google Scholar 

  • Riggs, P. D., Derman, A. I., and Beckwith, J. (1988).Genetics 118, 571–579.

    Google Scholar 

  • Rollo, E. E., and Oliver, D. B. (1988).J. Bacteriol. 170, 3281–3282.

    Google Scholar 

  • Ryan, J. P., and Bassford, P. J., Jr. (1985).J. Biol. Chem. 260, 14832–14837.

    Google Scholar 

  • Schatz, P. J., Riggs, P. D., Jacq, A., Fath, M. J., and Beckwith, J. (1989).Genes Dev. 3, 1035–1044.

    Google Scholar 

  • Schmidt, M. G., and Oliver, D. B. (1989).J. Bacteriol. 171, 643–649.

    Google Scholar 

  • Schmidt, M. G., Rollo, E. E., Grodberg, J., and Oliver, D. B. (1988).J. Bacteriol. 170, 3404–3414.

    Google Scholar 

  • Senior, A. E., and Wise, J. G. (1983).J. Membr. Biol. 73, 105–124.

    Google Scholar 

  • Shiba, K., Ito, K., and Yura, T. (1986a).J. Bacteriol. 166, 849–856.

    Google Scholar 

  • Shiba, K., Ito, K., Nakamura, Y., Dondon, J., and Grunberg-Manago, M. (1986b).EMBO J. 5, 3001–3006.

    Google Scholar 

  • Strauch, K. L., Kumamoto, C. A., and Beckwith, J. (1986).J. Bacteriol. 166, 505–512.

    Google Scholar 

  • Thompson, R. C. (1988).Trends Biochem. Sci. 13, 91–93.

    Google Scholar 

  • Tribhuvan, R. C., Pilgaokar, A. K., Pradhan, D. S., and Sreenivasan, A. (1970).Biochem. Biophys. Res. Commun. 41, 244–250.

    Google Scholar 

  • Verner, K., and Schatz, G. (1988).Science 241, 1307–1313.

    Google Scholar 

  • Watanabe, M., and Blobel, G. (1989a).Proc. Natl. Acad. Sci. USA 86, 2728–2732.

    Google Scholar 

  • Watanabe, M., and Blobel, G. (1989b).Cell 58, 695–705.

    Google Scholar 

  • Watson, M. D. (1985).Trends Biochem. Sci. 10, 3–4.

    Google Scholar 

  • Watts, C., Wickner, W., and Zimmermann, R. (1983).Proc. Natl. Acad. USA 80, 2809–2813.

    Google Scholar 

  • Wickner, W. (1979).Annu. Rev. Biochem. 48, 23–45.

    Google Scholar 

  • Wiech, H., Sagstetter, M., Müller, G., and Zimmerman, R. (1987).EMBO J. 6, 1011–1016.

    Google Scholar 

  • Wolfe, P. B., Wickner, W., and Goodman, J. M. (1983).J. Biol. Chem. 258, 12073–12080.

    Google Scholar 

  • Wolfe, P. B., Rice, M., and Wickner, W. (1985).J. Biol. Chem. 260, 1836–1841.

    Google Scholar 

  • Yamada, H., Tokuda, H., and Mizashima, S. (1989a).J. Biol. Chem. 264, 1723–1728.

    Google Scholar 

  • Yamada, H., Matsuyama, S., Tokuda, H., and Mizashima, S. (1989b).J. Biol. Chem. 264, 18577–18581.

    Google Scholar 

  • Yura, T., and Wada, C. (1968).Genetics 59, 177–190.

    Google Scholar 

  • Zimmerman, R., Sagstetter, M., Lewis, M. J., and Pelham, H. R. B. (1988).EMBO J. 7, 2875–2880.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliver, D.B., Cabelli, R.J. & Jarosik, G.P. SecA protein: Autoregulated initiator of secretory precursor protein translocation across theE. coli plasma membrane. J Bioenerg Biomembr 22, 311–336 (1990). https://doi.org/10.1007/BF00763170

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00763170

Key Words

Navigation