Skip to main content
Log in

On the equivalence of the relativistic theories of gravitation

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Einstein's equations are rewritten in terms of a certain torsionless linear connection Γα βμ which differs, in general, from the Levi-Civita metric connection γα βμ. The torsionless connection Γα βμ appears in a natural way as the canonical momentum of the gravitational field gμν . Einstein's equations have a simple interpretation in terms of the connection Γα βμ. The equivalence of the so-calledpurely metric, purely affine, andmetricaffine theories of gravitation is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benenti, S., and Tulczyjew W. M. (1980). “The Geometrical Meaning and the Globalization of the Hamilton-Jacobi Method,” inDifferential Geometrical Methods in Mathematical Physics, Lecture Notes in Mathematics, Vol. 836, pp. 9–21 (Springer, Berlin).

    Google Scholar 

  2. Eddington, A. S. (1924).The Mathematical Theory of Relativity. 2nd ed. (Cambridge University Press) (reprinted in 1953).

  3. Einstein, A. (1916). “Hamiltonsches Prinzip und allgemeine Relativitätstheorie,”Sitz-ungsber. Preuss. Akad. Wiss. (Berlin), 1111–1116.

  4. Einstein, A. (1923). “Zur allgemeinen Relativitätstheorie,”Sitzungsber. Preuss. Akad. Wiss. (Berlin), 32–38.

  5. Einstein, A. (1923). “Zur affinen Feldtheorie,”Sitzungsber. Preuss. Akad. Wiss. (Berlin), 137–140.

  6. Einstein, A. (1925). “Einheitliche Feldtheorie von Gravitation und Elektrizität,”Sitzungsber. Preuss. Akad. Wiss. (Berlin), 414–419.

  7. Ferraris, M. (1981). “Purely Affine Lagrangians and Electromagnetic Interactions,” (in preparation).

  8. Ferraris, M., and Kijowski, J. (1981). “General Relativity is a Gauge Type Theory,”Lett. Math. Phys.,5, 127–135.

    Google Scholar 

  9. Ferraris, M., and Kijowski, J. (1981). “On the Equivalence between the Purely Metric and the Purely Affine Theories of Gravitation,” submitted toSeminario Matematico dell'Universtà e del Politecnico di Torino.

  10. Hehl, F. W., and Kerlick, G. D. (1978). “Metric Affine Variational Principles in General Relativity. I. Riemannian Space-Time,”Gen. Rel. Grav.,9, 691–710.

    Google Scholar 

  11. Hubert, D. (1915). “Die Grundlagen der Physik,”Königl. Gesel. Wiss., Göttingen Nachr., Math. Phys. Kl., 394–407.

  12. Kijowski, J. (1978). “On a New Variational Principle in General Relativity and the Energy of the Gravitational Field,”Gen. Rel. Grav.,9, 857–877.

    Google Scholar 

  13. Kijowski, J. (1980). “On a Purely Affine Formulation of General Relativity,” inDifferential Geometrical Methods in Mathematical Physics Lecture Notes in Mathematics, Vol. 836, pp. 455–461. (Springer, Berlin).

    Google Scholar 

  14. Kijowski, J., Pawlik, B., and Tulczyjew, W. M. (1979). “A Variational Formulation of Nongravitating and Gravitating Hydrodynamics,”Bull. Acad. Polon. Sci., Math. Phys. Astr.,27, 163–170.

    Google Scholar 

  15. Kijowski, J., and Tulczyjew, W. M. (1979).A Symplectic Framework for Field Theories. Lecture Notes in Physics, Vol. 107 (Springer, Berlin).

    Google Scholar 

  16. Lorentz, H. A. (1961). “Oer Einstein's theorie der Zwaartekracht,”Konikl. Akad. Wetensch. Amsterdam,24, 1389–1402, 1759–1774.

    Google Scholar 

  17. Lorentz, H. A. (1916). “Oer Einstein's theorie der Zwaartekracht,”Konikl. Akad. Wetensch. Amsterdam,25, 468–486, 1380–1396.

    Google Scholar 

  18. Menzio, M. R., and Tulczyjew, W. M. (1978). “Infinitesimal Symplectic Relations and Generalized Hamiltonian Dynamics,”Ann. Inst. Henri Poincaré (Sect. A),28, 349–367.

    Google Scholar 

  19. Palatini, A. (1919). “Deduzione Invariantiva delle Equazioni Gravitazionali dal Prin-cipio di Hamilton,”Rend. Circ. Matem. Palermo,43, 203–212.

    Google Scholar 

  20. Schouten, J. A. (1954).Ricci-Calculus (Springer, Berlin).

    Google Scholar 

  21. Schrödinger, E. (1950).Space-Time Structure (Cambridge University Press).

  22. Trautman, A. (1980). “Fiber Bundles, Gauge Fields, and Gravitation,” inGeneral Relativity and Gravitation One Hundred Years after the Birth of Albert Einstein, Vol. 1, pp. 287–308, Edited by A. Held (Plenum Press, New York).

    Google Scholar 

  23. Tulczyjew, W. M. (1968).Seminar on Phase Spaces, University of Warsaw (unpublished).

  24. Tulczyjew, W. M. (1974). “Hamiltonian Systems, Lagrangian Systems and the Legendre Transformation,”Symp. Math.,14, 247–258.

    Google Scholar 

  25. Tulczyjew, W. M. (1977). “The Legendre Transformation,”Ann. Inst. Henri Poincaré (Sect. A),27, 101–114.

    Google Scholar 

  26. Yano, K. (1955).The Theory of Lie Derivatives and its Applications (North-Holland, Amsterdam).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been written under the financial support of Gruppo Nazionale per la Fisica Matematica of the Italian National Research Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferraris, M., Kijowski, J. On the equivalence of the relativistic theories of gravitation. Gen Relat Gravit 14, 165–180 (1982). https://doi.org/10.1007/BF00756921

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00756921

Keywords

Navigation