Skip to main content
Log in

Golden Oldie: Null Hypersurface Initial Data for Classical Fields of Arbitrary Spin and for General Relativity

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A form of initial value problem is considered in which the initial hypersurface is not spacelike but null. This approach has the striking advantage over the more usual Cauchy problem that all constraints (initial data equations) are eliminated from the theory, for a wide class of interacting fields in special relativity and also for general relativity. The theory is most naturally described in terms of the two-component spinor calculus, for which an elementary introduction is given here. A general scheme for interacting fields, which holds both in special and general relativity, is presented which describes all fields in terms of sets of irreducible spinors. The concept of an exact set of such spinors is introduced and it is shown that this concept is the appropriate one for an initial value problem on a null cone without constraints. The initial data can be expressed in the form of a complex number, called a null datum, defined at each point of the null cone, one corresponding to each spinor. There is the curious feature of these null data that apparently it is sufficient here, to have onehalf as much information per point as in the corresponding Cauchy problem. The classical Maxwell-Dirac theory and the Einstein-Maxwell theory are two examples that can be put into the form of exact sets. The Einstein empty-space equations are also of particular note, and in this case the null datum describes essentially the intrinsic geometry of the null cone. The argument given here as applied to a general exact set is incomplete in two important respects. Firstly it depends on the null data being analytic, and secondly the initial hypersurface must be a cone. However, both these restrictions are removed in the case of certain elementary fields called basic free fields, examples of which are the Weyl neutrino field, the free Maxwell field, and the linearized gravitational field. For these cases a simple explicit formula is introduced which expresses the field at any point in terms of the null datum, as an integral taken over the intersection of the initial null hypersurface with the null cone of the point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lichnerowicz, A. (1955).Théories relativistes de la gravitation et de l'électromagnétisme (Masson, Paris).

    MATH  Google Scholar 

  2. Foures-Bruhat, Y. (1956).J. Rat. Mech. Anal.,5, 941.

    MathSciNet  Google Scholar 

  3. Bondi, H., van der Burg, M. G. J., and Metzner, A. W. K. (1962).Proc. R. Soc. London Ser. A,269, 21; Sachs, R. K. (1962).Proc. R. Soc. London Ser. A,270, 103.

    Article  ADS  Google Scholar 

  4. Courant, R., and Hilbert, D. (1937).Methoden der Mathematischen Physik I, II (Interscience, New York).

    Book  MATH  Google Scholar 

  5. Riesz, M. (1949).Acta Math.,81, 1.

    Article  MathSciNet  Google Scholar 

  6. Infeld, L., and van der Waerden, B. L. (1933).Sitz. Ber. Preuss. Acad., Wiss. Physik.-math, K1,9, 380.

    Google Scholar 

  7. Whittaker, E. T. (1937).Proc. R. Soc. London Ser. A,158, 38.

    Article  ADS  Google Scholar 

  8. Ruse, H. S. (1944).Proc. R. Soc. Edinburg A,62, 64.

    Google Scholar 

  9. Bade, W. L., and Jehle, H. (1953).Rev. Mod. Phys.,25, 714.

    Article  ADS  Google Scholar 

  10. Corson, E. M. (1953).Introduction to Tensors, Spinors, and Relativistic Waveequations (Blackie, London).

    MATH  Google Scholar 

  11. Veblen, O., and von Neumann, J. (1935–36).Princeton Institute for Advanced Study-Lectures, “Geometry of Complex Domains” (Princeton University Press, Princeton, New Jersey).

    Google Scholar 

  12. Payne, W. T. (1959).Am. J. Phys.,27, 318.

    Article  ADS  Google Scholar 

  13. Penrose, R. (1960).Ann. Phys. (N. Y.),10, 171.

    Article  ADS  Google Scholar 

  14. Newman, E. T., and Penrose, R. (1962).J. Math. Phys.,3, 566;4, 998.

    Article  ADS  Google Scholar 

  15. Schrödinger, E. (1950).Space-Time Structure (Cambridge University Press, Cambridge).

    MATH  Google Scholar 

  16. Witten, L. (1959).Phys. Rev.,113, 357.

    Article  ADS  MathSciNet  Google Scholar 

  17. Dirac, P. A. M. (1936).Proc. R. Soc. London Ser. A,155, 447.

    Article  ADS  Google Scholar 

  18. Hadamard, J. (1952).Lectures on Cauchy's Problem in Linear Partial Differential Equations (Dover, New York).

    MATH  Google Scholar 

  19. Newman, E. T., and Penrose, R. (1968).Proc. R. Soc. London Ser. A,305, 175.

    Article  ADS  Google Scholar 

  20. Robinson, I. (1961).J. Math. Phys.,2, 290

    Article  ADS  Google Scholar 

  21. Sachs, R. K. (1961).Proc. R. Soc. London Ser. A,264, 309.

    Article  ADS  Google Scholar 

  22. Pirani, F. A. E. (1960).ARL Technical Note 60–143.

  23. Penrose, R. (1966). InPerspectives in Geometry and Relativity, ed. Hoffmann, B. (Indiana University Press, Bloomington).

    Google Scholar 

  24. Penrose, R. (1972). InGeneral Relativity, Papers in Honour of J. L. Synge ed. O'Raifeartaigh, L. (Clarendon Press, Oxford) Geroch, R., Held, A., and Penrose, R. (1973).J. Math. Phys.,14, 874.

    Google Scholar 

  25. Hlavatý, V. (1959).J. Math. Mech.,8, 285.

    MathSciNet  Google Scholar 

  26. Wigner, E. P., and Bargmann, V. (1948).Proc. Nat. Acad. Sci.,34, 211.

    Article  ADS  MathSciNet  Google Scholar 

  27. Bel, L. (1959).Compt. Rend.,248, 1297.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article originally appeared in 1963 in Aerospace Research Laboratories 63-56 (P.G. Bergmann). It is an important and oft-cited work, but as it has never been published in a widely distributed journal, it is generally inaccessable to the relativity community. This regrettable situation is hereby rectified-Ed.

This work was done while the author was at Princeton, Syracuse, and Cornell Universities, visiting under a NATO Fellowship administered by the Department of Scientific and Industrial Research in London. The work at Syracuse was supported by the Aeronautical Research Laboratory and at Cornell by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penrose, R. Golden Oldie: Null Hypersurface Initial Data for Classical Fields of Arbitrary Spin and for General Relativity. Gen Relat Gravit 12, 225–264 (1980). https://doi.org/10.1007/BF00756234

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00756234

Keywords

Navigation