Skip to main content
Log in

Structural requirements of quinone coenzymes for endogenous and dye-mediated coupled electron transport in bacterial photosynthesis

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Electron transport in continuous light has been investigated in chromatophores ofRhodopseudomonas capsulata, Ala pho+, depleted in ubiquinone-10 and subsequently reconstituted with various ubiquinone homologs and analogs. In addition the restoration of electron transport in depleted chromatophores by the artificial redox compoundsN-methylphenazonium methosulfate andN,N,N′,N′-tetramethyl-p-phenylenediamine was studied. The following pattern of activities was obtained: (1) Reconstitution of cyclic photophosphorylation with ubiquinone-10 was saturated at about 40 ubiquinone molecules per reaction center. (2) Reconstitution by ubiquinone homologs was dependent on the length of the isoprenoid side chain and the amount of residual ubiquinone in the extracted chromatophores. If two or more molecules of ubiquinone-10 per reaction center were retained, all homologs with a side chain longer than two isoprene units were as active as ubiquinone-10 in reconstitution, and the double bonds in the side chain were not required. If less than two molecules per reaction center remained, an unsaturated side chain longer than five units was necessary for full activity. Plastoquinone, α-tocopherol, and naphthoquinones of the vitamin K series were relatively inactive in both cases. (3) All ubiquinone homologs, also ubiquinone-1 and -2, could be reduced equally well by the photosynthetic reaction center, as measured by light-induced proton binding in the presence of antimycin A and uncoupler. Plastoquinone was found to be a poor electron acceptor. (4) Photophosphorylation could be reconstituted byN-methylphenazonium methosulfate as well as byN,N,N′,N′-tetramethyl-p-phenylenediamine in an antimycin-insensitive way, if more than two ubiquinones per reaction center remained. These compounds were active also in more extensively extracted particles reconstituted with ubiquinone-1, which itself was inactive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

UQ-n, n = 1–10:

ubiquinone with 1 to 10 isoprene units in the side chain

UQ-9 sat:

UQ-9 with a saturated side chain

PQ:

plastoquinone A

PMS:

N-methylphenazonium methosulfate

TMPD:

N,N,N′,N′-tetramethyl-p-phenylenediamine

DAD:

diaminodurene (2,3,5,6-tetramethyl-p-phenylenediamine)

FCCP:

carbonyl cyanide-p-trifluoromethoxyphenylhydrazone

E h :

redox potential

RC:

photosynthetic reaction center

BChl:

bacteriochlorophyll

PES:

N-methylphenazonium ethosulfate

References

  1. S. Okayama, N. Yamamoto, K. Nishikawa, and T. Horio,J. Biol. Chem. 243 (1968) 2995.

    Google Scholar 

  2. N. Yamamoto, H. Hatakeyama, K. Nishikawa, and T. Horio,J. Biochem. 67 (1970) 587.

    Google Scholar 

  3. A. Baccarini-Melandri and B. A. Melandri,FEBS Lett. 80 (1977) 459.

    Google Scholar 

  4. N. G. Carr and G. Exell,Biochem. J. 96 (1965) 688.

    Google Scholar 

  5. K. Takamiya, M. Nishimura, and A. Takamiya,Plant Cell Physiol. 8 (1967) 79.

    Google Scholar 

  6. K. Takamiya and P. L. Dutton,Biochim. Biophys. Acta 546 (1979) 1.

    Google Scholar 

  7. W. W. Parson, in:The Photosynthetic Bacteria R. K. Clayton and W. R. Siström, eds., Plenum Press, New York (1978), p. 455.

    Google Scholar 

  8. J. R. Bolton, in:The Photosynthetic Bacteria R. K. Clayton and W. R. Siström, eds., Plenum Press, New York (1978), p. 419.

    Google Scholar 

  9. A. Baccarini-Melandri and D. Zannoni,J. Bioenerg. Biomemb. 10 (1978) 109.

    Google Scholar 

  10. G. Feher, M. Y. Okamura, and J. S. McElroy,Biochim. Biophys. Acta 267 (1972) 222.

    Google Scholar 

  11. R. J. Cogdell, D. C. Brune, and R. K. Clayton,FEBS Lett. 45 (1974) 344.

    Google Scholar 

  12. K. J. Kaufmann, P. L. Dutton, T. L. Netzel, J. S. Leigh, and P. M. Rentzepis,Science 188 (1975) 1301.

    Google Scholar 

  13. M. G. Rockley, M. W. Windsor, R. J. Cogdell, and W. W. Parson,Proc. Natl. Acad. Sci. USA 72 (1975) 2251.

    Google Scholar 

  14. M. Y. Okamura, R. A. Isaacson, and G. Feher,Proc. Natl. Acad. Sci. USA 72 (1975) 3491.

    Google Scholar 

  15. R. J. Cogdell, J. B. Jackson, and A. R. Crofts,J. Bioenerg. 4 (1973) 221.

    Google Scholar 

  16. K. M. Petty and P. L. Dutton,Arch. Biochem. Biophys. 172 (1976) 335.

    Google Scholar 

  17. K. M. Petty, J. B. Jackson, and P. L. Dutton,Biochim. Biophys. Acta 546 (1979) 17.

    Google Scholar 

  18. J. R. Bowyer, A. Baccarini-Melandri, B. A. Melandri, and A. R. Crofts,Z. Naturforsch. Teil C 33 (1978) 704.

    Google Scholar 

  19. C. L. Bashford, R. C. Prince, K. Takamiya, and P. L. Dutton,Biochim. Biophys. Acta 545 (1979) 223.

    Google Scholar 

  20. K. Takamiya, R. C. Prince, and P. L. Dutton, inFrontiers of Biological Energetics from Electrons to Protons P. L. Dutton, J. S. Leigh, and A. Scarpa, eds., Academic Press, New York (1978).

    Google Scholar 

  21. E. H. Evans and A. R. Crofts,Biochim. Biophys. Acta 357 (1974) 89.

    Google Scholar 

  22. R. C. Prince and P. L. Dutton,Biochim. Biophys. Acta 462 (1977) 731.

    Google Scholar 

  23. F. L. Crane,Annu. Rev. Biochem. 46 (1976) 439.

    Google Scholar 

  24. D. W. Krogmann and E. Oliviero,J. Biol. Chem. 237 (1962) 3292.

    Google Scholar 

  25. A. Baccarini-Melandri and B. A. Melandri, inMethods in Enzymology A. San Pietro, ed., Vol. 23, Academic Press, New York and London (1971), p. 556.

    Google Scholar 

  26. A. Baccarini-Melandri, B. A. Melandri, and G. Hauska,J. Bioenerg. 11 (1979) 1.

    Google Scholar 

  27. P. L. Dutton, K. M. Petty, H. S. Bonner, and S. D. Morse,Biochim. Biophys. Acta 387 (1975) 536.

    Google Scholar 

  28. R. Barr and F. C. Crane,Methods Enzymol. 23 (1971) 372.

    Google Scholar 

  29. R. K. Clayton,Biochim. Biophys. Acta 75 (1973) 312.

    Google Scholar 

  30. A. Kröger and M. Klingenberg,Eur. J. Biochem. 34 (1973) 358.

    Google Scholar 

  31. P. Mitchell,J. Theor. Biol. 62 (1976) 327.

    Google Scholar 

  32. P. Mitchell, G.R.L. 78 1–6 graits from Glynn Research Laboratories, Bodmin, Cornwall, U.K. (1978).

  33. A. R. Crofts and J. Bowyer, inThe Proton and Calcium Pumps, G. F. Azzone, ed., Elsevier-North Holland Biomedical Press (1978), p. 55.

  34. A. Futami, E. Hurt, and G. Hauska,Biochim. Biophys. Acta 547 (1979) 583.

    Google Scholar 

  35. G. Hauska, S. Reimer, and A. Trebst,Biochim. Biophys. Acta 357 (1974) 1.

    Google Scholar 

  36. A. Trebst and S. Reimer,Z. Naturforsch. Teil C 28 (1973) 710.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baccarini-Melandri, A., Gabellini, N., Melandri, B.A. et al. Structural requirements of quinone coenzymes for endogenous and dye-mediated coupled electron transport in bacterial photosynthesis. J Bioenerg Biomembr 12, 95–110 (1980). https://doi.org/10.1007/BF00744677

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00744677

Keywords

Navigation