Skip to main content
Log in

Myosin isozymes in avian skeletal muscles. I. Sequential expression of myosin isozymes in developing chicken pectoralis muscles

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Myosin has been purified from chicken pectoralis muscle at various stages of development, from 10 days' incubation to approximately 10 months after hatching. Embryonic myosin from the earliest stage showed a high level of ATPase activity, similar to that obtained for adult pectoralis myosin. Two-dimensional peptide mapping of partial chymotryptic digests showed, however, that its heavy chain is quite different from that of adult fast myosin. The immunological crossreactivity observed between embryonic myosin and adult fast (pectoralis) myosin is therefore due to shared antigenic determinants rather than the presence of any adult isoforms. In an accompanying paper we will show that embryonic myosin at 10 days' incubation is not a single species, but consists of at least two heavy chain isozymes. The minor fraction binds slow light chains preferentially, and appears to be largely responsible for the observed crossreactivity with slow (ALD) myosin. None of the embryonic myosins is equivalent to the adult forms.

Prior to hatching, LC3f is present only in very small amounts (<5%), and the adult light chain pattern, containing LC1f and LC3f in equimolar amounts, is not generated until after one week post-hatching. At about that time a new heavy chain population is detected, different from either the embryonic heavy chain or the adult heavy chain. The adult heavy chain peptide pattern appears from about three weeks' post-hatching, but a map indistinguishable from that of adult myosin is not observed until about 26 weeks. None of the observed differences in peptide maps can be related to different strains of chicken; pectoralis myosin from adult White Rock gave an identical map to that from White Leghorn. Unexpectedly, posterior latissimus dorsi (PLD) myosin from White Leghorn appears to be different from pectoralis myosin from the same strain, despite the histochemical and immunocytochemical similarity of the two muscles. We conclude that myosin polymorphism is widespread in muscle tissue, and that the expression of myosin isozymes and their subunits is under developmental regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BADER, D., MASAKI, T. & FISCHMAN, D. A. (1982) Immunochemical analysis of myosin heavy chain during avian myogenesisin vivo andin vitro.J. Cell Biol. 95, 763–70.

    Google Scholar 

  • BANDMAN, E., MATSUDA, R., MICOU-EASTWOOD, J. & STROHMAN, R. (1981)In vitro translation of RNA from embryonic and from adult chicken pectoralis muscle produces different myosin heavy chains.FEBS Lett. 136, 301–5.

    Google Scholar 

  • BANDMAN, E., MATSUDA, R. & STROHMAN, R. C. (1982a) Myosin heavy chains from two different adult fast twitch muscles have different peptide maps but identical mRNAs.Cell 29, 645–50.

    Google Scholar 

  • BANDMAN, E., MATSUDA, R. & STROHMAN, R. C. (1982b) Developmental appearance of myosin heavy and light chain isoformsin vivo andin vitro in chicken skeletal muscle.Devl Biol. 93, 508–18.

    Google Scholar 

  • BARANY, M. (1967) ATPase activity of myosin correlated with speed of muscle shortening.J. gen. Physiol. 50, 197–218.

    Google Scholar 

  • BENFIELD, P. A., LOWEY, S. & LeBLANC, D. D. (1981) Fractionation and characterization of myosins from embryonic chicken pectoralis muscle.Biophys. J. 33, 243a.

  • BENFIELD, P. A., LOWEY, S., LeBLANC, D. D. & WALLER, G. S. (1983) Myosin isozymes in avian skeletal muscles. II. Fractionation of myosin isozymes from adult and embryonic chicken pectoralis muscle by immuno-affinity chromatography.J. Musc. Res. Cell Motility 4, 717–738.

    Google Scholar 

  • BULLER, A. J., ECCLES, J. C. & ECCLES, R. M. (1960) Differentiation of fast and slow muscles in the cat hind limb.J. Physiol. 150, 399–416.

    Google Scholar 

  • COOKE, R., FRANKS, K. & STULL, J. (1982) Myosin phosphorylation regulates the ATPase activity of permeable skeletal muscle fibres.FEBS Lett. 144, 33–7.

    Google Scholar 

  • CROW, M. T. & KUSHMERICK, M. J. (1982) Myosin light chain phosphorylation is associated with a decrease in the energy cost for contraction in fast twitch mouse muscle.J. biol. Chem. 257, 2121–4.

    Google Scholar 

  • d'ALBIS, A., PANTALONI, C. & BECHET, J. J. (1979) An electrophoretic study of native myosin isozymes and their subunit content.Eur. J. Biochem. 99, 261–72.

    Google Scholar 

  • GAUTHIER, G. F. & LOWEY, S. (1977) Polymorphism of myosin among skeletal muscle fibre types.J. Cell Biol. 74, 760–79.

    Google Scholar 

  • GAUTHIER, G. F. & LOWEY, S. (1979) Distribution of myosin isoenzymes among skeletal muscle fiber types.J. Cell Biol. 81, 10–25.

    Google Scholar 

  • GAUTHIER, G. F., LOWEY, S., BENFIELD, P. A. & HOBBS, A. W. (1982) Distribution and properties of myosin isoenzymes in developing avian and mammalian skeletal muscle fibres.J. Cell Biol. 92, 471–84.

    Google Scholar 

  • GAUTHIER, G. F., LOWEY, S. & HOBBS, A. W. (1978) Fast and slow myosin in developing muscle fibres.Nature 274, 25–9.

    Google Scholar 

  • GOLDMAN, Y. E., HIBBERD, M. G., MCCRAY, J. A. & TRENTHAM, D. R. (1982) Relaxation of muscle fibres by photolysis of caged ATP.Nature 300, 701–5.

    Google Scholar 

  • GORDON, T. & VRBOVA, G. (1975) The influence of innervation on the differentiation of contractile speeds of developing chick muscles.Pflügers Arch. 360, 199–218.

    Google Scholar 

  • HAMBURGER, V. & HAMILTON, H. L. (1951) A series of normal stages in the development of the chick embryo.J. Morphol. 88, 49–92.

    Google Scholar 

  • HOH, J. F. Y. (1978) Light chain distribution of chicken skeletal muscle myosin isoenzymes.FEBS Lett. 90, 297–300.

    Google Scholar 

  • HOH, J. F. Y. (1979) Developmental changes in chicken skeletal myosin isoenzymes.FEBS Lett. 98, 267–70.

    Google Scholar 

  • HOLT, J. C. & LOWEY, S. (1975) An immunological approach to the role of the low molecular weight subunits in myosin: I. Physical-chemical and immunological characterization of the light chains.Biochemistry 14, 4600–8.

    Google Scholar 

  • HOLT, J. C. & LOWEY, S. (1977) Distribution of alkali light chains in myosin: isolation of isoenzymes.Biochemistry 16, 4398–402.

    Google Scholar 

  • HUSZAR, G. (1972) Developmental changes of the primary structure and histidine methylation in rabbit skeletal muscle myosin.Nature 240, 260–4.

    Google Scholar 

  • HUSZAR, G. (1975) Tissue-specific biosynthesis of ε-N-Monomethyllysine and ε-N-Trimethyllysine in skeletal and cardiac muscle myosin: A model for the cell-free study of post-translational amino acid modifications in proteins.J. molec. Biol. 94, 311–26.

    Google Scholar 

  • JAENICKE, L. (1974) A rapid micromethod for the determination of nitrogen and phosphate in biological material.Analyt. Biochem. 61, 623–7.

    Google Scholar 

  • KELLER, L. & EMERSON, C. (1980) Synthesis of adult myosin light chains by embryonic muscle cultures.Proc. natn. Acad. Sci. U.S.A. 77, 1020–4.

    Google Scholar 

  • KLINMAN, N. R., PICKARD, A. R., SIGAL, N. H., GEARHART, P. J., METCALF, E. S. & PIERCE, S. K. (1976) Assessing B cell diversification by antigen receptor and precursor cell analysis.Ann. Immunol. Inst. Pasteur 127C, 489–502.

    Google Scholar 

  • KUEHL, W. M. & ADELSTEIN, R. S. (1970) The absence of 3-methylhistidine in red, cardiac and fetal myosins.Biochem. Biophys. Res. Commun. 39, 956–64.

    Google Scholar 

  • LOWEY, S., BENFIELD, P. A., LeBLANC, D. D., WALLER, G. S., WINKELMANN, D. A. & GAUTHIER, G. F. (1982) Characterization of myosins from embryonic and developing chicken pectoralis muscle. InMuscle Development: Molecular and Cellular Control (edited by PEARSON, M. L. and EPSTEIN, H. F.), pp. 15–24. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  • LOWEY, S., BENFIELD, P. A., SILBERSTEIN, L. & LANG, L. M. (1979) Distribution of light chains in fast skeletal myosin.Nature 282, 522–4.

    Google Scholar 

  • LOWEY, S. & RISBY, D. (1971) Light chains from fast and slow muscle myosins.Nature 234, 81–5.

    Google Scholar 

  • MARSTON, S. B. & TAYLOR, E. W. (1980) Comparison of the myosin and actomyosin ATPase mechanisms of the four types of vertebrate muscles.J. molec. Biol. 139, 573–600.

    Google Scholar 

  • MARTIN, A. F., RABINOWITZ, M., BLAUGH, R., PRIOR, G. & ZAK, R. (1977) Measurement of half-life of rat cardiac myosin heavy chain with leucyl-tRNA used as precursor pool.J. biol. Chem. 252, 3422–9.

    Google Scholar 

  • MASAKI, T., BADER, D. M., REINACH, F. C., SHIMIZU, T., OBINATA, T., SHAFIQ, S. A. & FISCHMAN, D. A. (1982) Monoclonal antibody analysis of myosin heavy-chain and C-protein isoforms during myogenesis. InMuscle Development: Molecular and Cellular Control (edited by PEARSON, M. L. and EPSTEIN, H. F.), pp. 405–417. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  • MASAKI, T. & YOSHIZAKI, C. (1974) Differentiation of myosin in chick embryos.J. Biochem. 76, 123–31.

    Google Scholar 

  • MCLACHLAN, A. & KARN, J. (1982) Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacings in muscle.Nature 299, 226–31.

    Google Scholar 

  • MOERMAN, D. G., PLURAD, S., WATERSTON, R. H. & BAILLIE, D. L. (1982) Mutations in the unc-54 myosin heavy chain gene ofCaenorhabditis elegans that alter contractility but not muscle structure.Cell 29, 773–81.

    Google Scholar 

  • NGUYEN, H. T., GUBITS, R., WYDRO, R. & NADAL-GINARD, B. (1982) Sarcomeric myosin heavy chain is coded by a highly conserved multigene family.Proc. natn. Acad. Sci. U.S.A. 79, 5230–4.

    Google Scholar 

  • PASTRA-LANDIS, S. C., HUIATT, T. W. & LOWEY, S. (1983) Assembly and kinetic properties of myosin light chain isozymes from fast skeletal muscle.J. molec. Biol. (in press).

  • POLLARD, T. D. (1982) Purification of nonmuscle myosins. InMethods in Enzymology 85, 331–56.

    Google Scholar 

  • POPE, B., WAGNER, P. D. & WEEDS, A. G. (1981) Studies on the actomyosin ATPase and the role of the alkali light chains.Eur. J. Biochem. 117, 201–6.

    Google Scholar 

  • REISER, P. J., STOKES, B. T. & RALL, J. A. (1982) Isometric contractile properties and velocity of shortening during avian myogenesis.Am. J. Physiol. 243, C177–83.

    Google Scholar 

  • ROBBINS, J., FREYER, G. A., CHISHOLM, D. & GILLIAM, T. G. (1982) Isolation of multiple genomic sequences coding for chicken myosin heavy chain protein.J. biol. Chem. 257, 549–56.

    Google Scholar 

  • RUBINSTEIN, N., CHI, J. & HOLTZER, H. (1976) Coordinated synthesis and degradation of actin and myosin in a variety of myogenic and non-myogenic cells.Expl Cell Res. 97, 387–93.

    Google Scholar 

  • RUBINSTEIN, N. & KELLY, A. (1981) Development of muscle fiber specialization in the rat hind limb.J. Cell Biol. 90, 128–44.

    Google Scholar 

  • RUBINSTEIN, N. A., PEPE, F. A. & HOLTZER, H. (1977) Myosin types during the development of embryonic chicken fast and slow muscles.Proc. natn. Acad. Sci. U.S.A. 74, 4524–7.

    Google Scholar 

  • RUSHBROOK, J. I. & STRACHER, A. (1979) Comparison of adult, embryonic and dystrophic myosin heavy chains from chicken muscle by sodium dodecyl sulphate/polyacrylamide gel electrophoresis and peptide mapping.Proc. natn. Acad. Sci. 76, 4331–4.

    Google Scholar 

  • SCHWARTZ, K., LOMPRE, A.-M., BOUVERET, P., WISNEWSKY, C. & WHALEN, R. G. (1982) Comparisons of rat cardiac myosins at fetal stages in young animals and in hypothyroid adults.J. biol. Chem. 257, 14412–8.

    Google Scholar 

  • SILBERSTEIN, L. & LOWEY, S. (1981) Isolation and distribution of myosin isoenzymes in chicken pectoralis muscle.J. molec. Biol. 148, 153–89.

    Google Scholar 

  • SIVARAMAKRISHNAN, M. & BURKE, M. (1982) The free heavy chain of vertebrate skeletal myosin subfragment 1 shows full enzymatic activity.J. biol. Chem. 257, 1102–5.

    Google Scholar 

  • SRETER, F. A., BALINT, M. & GERGELY, J. (1975) Structural and functional changes of myosin during development. Comparison with adult fast, slow and cardiac myosins.Devl Biol. 46, 317–25.

    Google Scholar 

  • STOCKDALE, F. E., RAMAN, N. & BADEN, H. (1981) Myosin light chains and the developmental origin of fast muscle.Proc. natn. Acad. Sci. 78, 931–5.

    Google Scholar 

  • TRAYER, I. P. & PERRY, S. V. (1966) The myosin of developing skeletal muscle.Biochem. J. 345, 87–100.

    Google Scholar 

  • UMEDA, P. K., KAVINSKY, C. J., SINHA, A. M., HSU, H.-J., JAKOVCIC, S. & RABINOWITZ, M. (1983) Cloned mRNA sequences for two types of embryonic myosin heavy chains from chick skeletal muscle.J. biol. Chem. 258, 5206–14.

    Google Scholar 

  • UMEDA, P. K., SINHA, A. M., JAKOVCIC, S., MERTEN, S., HSU, H.-J., SUBRAMANIAN, K. N., ZAK, R. & RABINOWITZ, M. (1981) Molecular cloning of two fast myosin heavy chain cDNAs from chick embryo skeletal muscle.Proc. natn. Acad. Sci. 78, 2843–7.

    Google Scholar 

  • WAGNER, P. (1981) Formation and characterization of myosin hybrids containing essential light chains and heavy chains from different muscle myosins.J. biol. Chem. 256, 2493–8.

    Google Scholar 

  • WAGNER, P. & GINIGER, E. (1981) Hydrolysis of ATP and reversible binding to F-actin by myosin heavy chains free of all light chains.Nature 292, 560–2.

    Google Scholar 

  • WHALEN, R. G., BUTLER-BROWNE, G. S. & GROS, F. (1978) Identification of a novel form of myosin light chain present in embryonic muscle tissue and cultured muscle cellsJ. molec. Biol. 126, 415–31.

    Google Scholar 

  • WHALEN, R. G., SCHWARTZ, K., BOUVERET, P., SELL, S. M. & GROS, F. (1979) Contractile protein isozymes in muscle development: Identification of an embryonic form of myosin heavy chain.Proc. natn. Acad. Sci. 76, 5197–201.

    Google Scholar 

  • WHALEN, R. G., SELL, S. M., BUTLER-BROWNE, G., SCHWARTZ, K., BOUVERET, P. & PINSET-HÄRSTRÖM, I. (1981) Three myosin heavy chain isozymes appear sequentially in rat muscle development.Nature 292, 805–9.

    Google Scholar 

  • WINKELMANN, D. A., LOWEY, S. & PRESS, J. L. (1983) Monoclonal antibodies localize changes on myosin heavy chain isozymes during avian myogenesis.Cell 34, 295–306.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowey, S., Benfield, P.A., LeBlanc, D.D. et al. Myosin isozymes in avian skeletal muscles. I. Sequential expression of myosin isozymes in developing chicken pectoralis muscles. J Muscle Res Cell Motil 4, 695–716 (1983). https://doi.org/10.1007/BF00712161

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00712161

Keywords

Navigation