Skip to main content
Log in

The effects of short-chain fatty acids on the neuronal membrane functions ofHelix pomatia. I. electrical properties

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    The effects of short-chain fatty acids on the membrane excitability, currentvoltage (I-V) characteristics, and cell volume ofHelix pomatia neurons were studied.

  2. 2.

    2-Decenoic acid (DA), having 10 carbon atoms in the hydrocarbon chain, suppressed the excitability of bursting neurons RPal (Sakharov and Salanki, 1969) for 30–60 min, while valeric acid (VA), having 5 carbon atoms, had no significant effect on excitability.

  3. 3.

    DA had three different effects on the excitability of beating neurons: in some neurons DA suppressed excitability as in bursting neurons; in a second type of neuron DA had a negligible effect on excitability; and in the neuron located near RPa1 DA had a pentylentetrazol (PTZ)-like effect, i.e., it converted the discharge of the neuron from beating to bursting.

  4. 4.

    DA decreased the peak value of the current, inducing a negative-resistance region in theI-V curve of the bursting neuron without any change in the level of the voltage at which the current reaches its maximal value.

  5. 5.

    DA inhibited the hyperpolarization induced by activation of the Na+ pump, tested after preliminary enrichment of neurons with Na+ ions by incubation in a potassium-free solution for 20 min.

  6. 6.

    DA caused a swelling of the neuron by about 10% which was independent of the Na+ pump. In all the above-mentioned cases VA had no significant effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, K., and Thomas, B. S. (1971). The effects of long chain fatty acids on sodium plus potassium ionstimulated adenosine triphosphatase of rat brain.J. Biol. Chem. 246103–109.

    Google Scholar 

  • Arvanitaki, A., and Chalazonitis, N. (1961). Slow waves and associated spiking in nerve cells ofAplysia.Bull. Inst. Oceanogr. Monaco 58(1224):1–15.

    Google Scholar 

  • Arvanov, V. L., Takenaka, T., Dadalian, S. S., and Ayrapetyan, S. N. (1986). The effects of short-chain fatty acids on the neuronal membrane functions ofHelix pomatia. 2. Cholinoreceptive properties.Cell. Mol. Neurobiol. 6000–000.

    Google Scholar 

  • Ayrapetyan, S. N. (1969). Metabolically dependent part of membrane potential and electrode properties of giant neuron membrane of molluscs.Biofizika 141027–1031 (Russian).

    Google Scholar 

  • Ayrapetyan, S. N. (1973). On the regulation of the mechanism of rhythmic activity ofHelix neurons. InNeurobiology of Invertebrates. Mechanisms of Rhythm Regulation (Salanki, J., Ed.), Akademiai Kiado, Budapest, pp. 81–92.

    Google Scholar 

  • Ayrapetyan, S. N. (1976). Involvement of the sodium pump in slow oscillations underlying the bursting patterns inHelix neurons. InNeurobiology of Invertebrates. Gastropoda Brain (Salanki, J., Ed.), Akademiai Kiado, Budapest, pp. 353–370.

    Google Scholar 

  • Ayrapetyan, S. N., and Suleymanian, M. A. (1979). On the pump-induced cell volume changes.Comp. Biochem. Physiol. 64A571–575.

    Google Scholar 

  • Ayrapetyan, S. N., Suleymanian, M. A., Saghyan, A. A., and Dadalian, S. S. (1984). Autoregulation of the electrogenic sodium pump.Cell. Mol. Neurobiol. 4367–383.

    Google Scholar 

  • Carpenter, D. O. (1973). Ionic mechanisms and models of endogenous discharge ofAplysia neurons. InNeurobiology of Invertebrates. Mechanism of Rhythm Regulation (Salanki, J., Ed.), Akademiai Kiado, Budapest, pp. 35–58.

    Google Scholar 

  • Eckert, R., and Lux, H. D. (1976). A voltage-sensitive persistent calcium conductance in neuronal somata ofHelix.J. Physiol. (Lond.)254129–151.

    Google Scholar 

  • Familiari, M. (1977). Action mechanism of ketamine at membrane level.Minerva Anestesiol. 43435–448 (Italian).

    Google Scholar 

  • Frazier, W., Kandel, E., Kupfermann, I., Waziri, R., and Coggeshall, R. (1967). Morphological and functional properties of identified neurons in the abdominal ganglion ofAplysia.J. Neurophysiol. 301288–1351.

    Google Scholar 

  • Gainer, H. (1972). Patterns of protein synthesis in individual, identified molluscan neurons.Brain Res. 39369–385.

    Google Scholar 

  • Gola, M. (1976). Electrical properties of bursting pacemaker neurons. InNeurobiology of Invertebrates. Gastropoda Brain (Salanki, J., Ed.), Akademiai Kiado, Budapest, pp. 381–423.

    Google Scholar 

  • Kernan, R. P. (1962). Membrane potential changes during sodium transport in frog sartorius muscle.Nature (Lond.)193986–987.

    Google Scholar 

  • Kojima, M., Ayrapetyan, S. N., and Koketsu, K. (1984). On the membrane potential independent mechanism of the sodium pump-induced inhibition of spontaneous electrical activity of Japanese land snail neurons.Comp. Biochem. Physiol. 77A577–583.

    Google Scholar 

  • Moore, J. W. (1959). Electronic control of some active bioelectric membranes.Proc. IREE 471869.

    Google Scholar 

  • Sakharov, D. A., and Salanki, J. (1969). Physiological and pharmacological identification of neurons in the central nervous system ofHelix pomatia L.Acta Physiol. Hung. 3519–30.

    Google Scholar 

  • Singer, S. J., and Nicolson, G. L. (1972). The fluid mosaic model of the structure of cell membrane.Science 175720–731.

    Google Scholar 

  • Strumwasser, F. (1965). The demonstration and manipulation of a circadian rhythm in a single neuron. InCircadian Clocks (Aschoff, J., Ed.), North-Holland, Amsterdam, pp. 442-462.

  • Sugaya, A., Sugaya, E., and Tsujitani, M. (1973). Pentylentetrazolinduced intracellular potential changes of the neuron of the Japanese land snailEuhadra peliompha.a.Jap. J. Physiol. 23261–274.

    Google Scholar 

  • Swann, A. C. (1984). Free fatty acids and (Na+, K+)-ATPase: Effects on cation regulation, enzyme conformation and interactions with ethanol.Arch. Biochem. Biophys. 233354–361.

    Google Scholar 

  • Takenaka, T., Horie, H., Hori, H., Yoshioka, T., and Iwanami, Y. (1981). Inhibitory effects of myrmicacin on the sodium channel in the squid giant axon.Proc. Jap. Acad. Ser. B 57314–317.

    Google Scholar 

  • Takenaka, T., Horie, H., and Kawasaki, Y. (1983). Effect of fatty acids on the membrane fluidity of cultured chick dorsal root ganglion measured by fluorescence photobleaching recovery.J. Neurobiol. 14457–461.

    Google Scholar 

  • Wachtel, H., and Wilson, W. A. (1973). Voltage clamp analysis of rhythmic slow wave generation in bursting neurons. InNeurobiology of Invertebrates. Mechanisms of Rhythm Regulation (Salanki, J., Ed.), Akademiai Kiado, Budapest, pp. 59–80.

    Google Scholar 

  • Wachtel, H., Carnevale, N. T., and Ayrapetyan, S. N. (1975). The electrogenesis and metabolic regulation of slow oscillations underlying burst firing patterns inAplysia andHelix neurons. InProblems of Brain Biochemistry (Buniatyan, Kh., Ed.), Acad. Sci. Armen. SSR, Yerevan, pp. 144–167.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suleymanian, M.A., Takenaka, T., Stamboltsyan, K.V. et al. The effects of short-chain fatty acids on the neuronal membrane functions ofHelix pomatia. I. electrical properties. Cell Mol Neurobiol 6, 151–163 (1986). https://doi.org/10.1007/BF00711067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711067

Key words

Navigation