Skip to main content
Log in

Utilization and cooxidation of chlorinated phenols byPseudomonas sp. B 13

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas sp. B13 was grown in continuous culture on 4-chlorophenol as the only carbon source. Maximum growth rate of 0.4h-1 was observed at a substrate concentration of >0.01 mM and <0.15 mM. In addition to the enzymes of phenol catabolism, high specific 1,2-dioxygenase activities with chlorocatechols as substrates were found. The isomeric monochlorinated phenols were also totally degraded by 4-chlorophenol grown cells. (+)-2,5-Dihydro-4-methyl- and (+)-2,5-dihydro-2-methyl-5-oxo-furan-2-acetic acid were formed in high yield as dead-end catabolites from cooxidation of cresoles.

Several dichlorophenols except 2,6-dichlorophenol were removed from the culture fluid by chlorophenol grown cells. Ring cleavage of chlorinated catechols were shown to be one of the critical steps in chlorophenol catabolism. A catabolic pathway for isomeric chlorophenols is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HPLC:

High performance liquid chromatography

DHB:

“Dihydrodihydroxybenzoate” 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid

References

  • Chu, J., Kirsch, E. J.: Utilization of halophenols by a pentachlorophenol metabolizing bacterium. Dev. Ind. Microbiol.14, 264–273 (1973)

    Google Scholar 

  • Clarke, P. H., Ornston, L. N.: Metabolic pathways and regulation-Part I. In: Genetics and biochemistry ofPseudomonas, pp. 191–261 (P. H. Clarke, M. H. Richmond, eds.). London: Wiley (1975)

    Google Scholar 

  • Cserjesi, A. J.: Detoxification of chlorinated phenols. Int. Biodeterior. Bull.8, 135–138 (1972)

    Google Scholar 

  • Dorn, E., Hellwig, M., Reineke, W., Knackmuss, H.-J.: Isolation and characterization of a 3-chlorobenzoate degrading Pseudomonad. Arch. Microbiol.99, 61–70 (1974)

    Google Scholar 

  • Dorn, E., Knackmuss, H.-J.: Chemical structure and biodegrad-ability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown Pseudomonad. Biochem. J. (1978a, in press)

  • Dorn, E., Knackmuss, H.-J.: Chemical structure and biodegrad-ability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem. J. (1978 b, in press)

  • Evans, W. C., Smith, B. S. W., Fernley, H. N., Davies, J. I.: Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem. J.122, 543–551 (1971a)

    Google Scholar 

  • Evans, W. C., Smith, B. S. W., Moss, P., Fernley, H. N.: Bacterial metabolism of 4-chlorophenoxyacetate. Biochem. J.122, 509–517 (1971b)

    Google Scholar 

  • Fujiwara, M., Golovleva, L. A., Saeki, Y., Nozaki, M., Hayaishi, O.: Extradiol cleavage of 3-substituted catechols by an intradiol dioxygenase, pyrocatechase, from a Pseudomonad. J. Biol Chem.250, 4848–4855 (1975)

    Google Scholar 

  • Gamar, Y., Gaunt, J. K.: Bacterial metabolism of 4-chloro-2-methylphenoxyacetate. Formation of glyoxylate by sidechain cleavage. Biochem. J.122, 527–531 (1971)

    Google Scholar 

  • Gaunt, J. K., Evans, W. C.: Metabolism of 4-chloro-2-methylphenoxyacetate. by a soil Pseudomonad. Preliminary evidence for the metabolic pathway. Biochem. J.122, 519–526 (1971a)

    Google Scholar 

  • Gaunt, J. K., Evans, W. C.: Metabolism of 4-chloromethylphenoxyacetate by a soil Pseudomonad. Ring-fission, lactonizing and delactonizing enzymes. Biochem. J.122, 533–542 (1971b)

    Google Scholar 

  • Hayaishi, O., Katagiri, M., Rothberg, S.: Studies on oxygenases, Pyrocatechase. J. Biol. Chem.229, 905–920 (1957)

    Google Scholar 

  • Knackmuss, H.-J., Hellwig, M., Lackner, H., Otting, W.: Cometabolism of 3-methylbenzoate and methylcatechols by a 3-chlorobenzoate utilizingPseudomonas: Accumulation of (+)-2,5-dihydro-4-methyl- and (+)-2,5-dihydro-2-methyl-5-oxofuran-2-acetic acid. Eur. J. Appl. Microbiol.2, 267–276 (1976)

    Google Scholar 

  • Ornston, L. N.: The conversion of catechol and protocatechuate to β-ketoadipate byPseudomonas putida. III. Enzymes of the catechol pathway. J. Biol. Chem.241, 3795–3799 (1966)

    Google Scholar 

  • Reineke, W.: Ursachen des verlangsamten biologischen Abbaus halogenierter aromatischer Kohlenwasserstoffe: Modelluntersuchungen an substituierten Benzoaten und 3,5-Cyclohexadien-1,2-diol-1-carbonsäuren Dissertation, Univ. Göttingen (1976)

  • Reiner, A. M.: Metabolism of aromatic compounds in bacteria. Purification and properties of the catechol-forming enzyme, 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid (NAD+) oxidoreductase. J. Biol. Chem.247, 4960–4965 (1972)

    Google Scholar 

  • Schmidt, E.: Substituenten-Einflüsse auf die Induktion der Enzyme für den Abbau von meta-Halogenbenzoaten durchPseudomonas Stamm B 13. Diplomarbeit, Univ. Göttingen (1976)

  • Schmidt, K., Liaaen-Jensen, S., Schlegel, H. G.: Die Carotinoide der Thiorhodaceae. I. Okenon als Hauptcarotinoid vonChromatium okenii Perty. Arch. Mikrobiol.46, 117–126 (1963

    Google Scholar 

  • Sharpee, K. W., Duxbury, I.M., Alexander, M.: 2,4-Dichlorophenoxyacetate metabolism byArthrobacter sp.: Accumulation of a chlorobutenolide. Appl. Microbiol.26, 445–447 (1973)

    Google Scholar 

  • Tabak, H. H., Chambers, C. W., Kabler, P. W.: Microbial metabolism of aromatic compounds. I. Decomposition of phenolic compounds and aromatic hydrocarbons by phenol-adapted bacteria. J. Bacteriol.87, 910–919 (1964)

    Google Scholar 

  • Tiedje, J. M., Duxbury, J. M., Alexander, M., Dawson, J. E.: 2,4-D metabolism: Pathway of degradation of chlorocatechols byArthrobacter sp. J. Agric. Food Chem.17, 1021–1026 (1969)

    Google Scholar 

  • Tyler, J. E., Finn, R. K.: Growth rates of a Pseudomonad on 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol. Appl. Microbiol.28, 181–184 (1974)

    Google Scholar 

  • Warburg, O., Christian, W.: Isolierung und Kristallisation des Gärungsferments Enolase. Biochem. Z.310, 384–421 (1942)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knackmuss, HJ., Hellwig, M. Utilization and cooxidation of chlorinated phenols byPseudomonas sp. B 13. Arch. Microbiol. 117, 1–7 (1978). https://doi.org/10.1007/BF00689343

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00689343

Key words

Navigation