Skip to main content
Log in

NMR and axial magnetic field textures in stationary and rotating superfluid3He-B

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have performed NMR measurements on the flare-out texture of superfluid3He-B in a cylindrical container of 5 mm diameter in axial magnetic fields of 28.4 and 56.9 mT. The transverse cw NMR spectra have been analyzed both with respect to their overall shape and the spin-wave absorption peaks close to the Larmor frequency. Our analysis of the stationary state spectra, based on texture computations, yields the longitudinal resonance frequency v L (T), the magnetic healing length ξ H (T), and the dipolar length ξ D (T), which we report for pressures below 29 bar. A lattice of quantized vortex lines appears in the rotating state, and two additional textural free energy terms have to be included in the analysis. One of the terms is linear in the applied magnetic field and arises from the spontaneous magnetization of the vortex cores. The second term is quadratic in magnetic field; it is generated both by the superflow field v s (r) about the vortex core and the difference in the induced magnetizations of the vortex-core and the bulk superfluids. The rotational orienting effects have been studied for rotation speedsβ up to 2red/sec.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. D. Osheroff, R. C. Richardson, and D. M. Lee,Phys. Rev. Lett. 28, 885 (1972); D. D. Osheroff, W. J. Gully, R. C. Richardson, and D. M. Lee,Phys. Rev. Lett. 33, 584 (1972).

    Google Scholar 

  2. P. J. Hakonen, O. T. Ikkala, S. T. Islander, and O. V. Lounasmaa, T. K. Markkula, P. Roubeau, K. M. Saloheimo, G. E. Volovik, E. L. Andronikashvili, D. I. Garibashvili, and J. S. Tsakadze,Phys. Rev. Lett. 48, 1838 (1982); O. T. Ikkala, and G. E. Volovik, P. J. Hakonen, Yu. M. Bunkov, S. T. Islander, and G. A. Kharadze,Pis'ma Zh. Eksp. Teor. Fiz. 35, 338 (1982) [JETP Lett.49, 1258 (1982)].

    Google Scholar 

  3. P. L. Gammel, H. E. Hall, and J. D. Reppy,Phys. Rev. Lett. 52, 121 (1984);52, 1701 (1984).

    Google Scholar 

  4. P. J. Hakonen, O. T. Ikkala, S. T. Islander, O. V. Lounasmaa, and G. E. Volovik,J. Low Temp. Phys. 53, 425 (1983).

    Google Scholar 

  5. M. Krusius, P. J. Hakonen, and J. T. Simola,Physica 126B, 22 (1984).

    Google Scholar 

  6. Yu. M. Bun'kov, G. E. Gurgenishvili, M. Krusius, and G. A. Kharadze,Usp. Fiz. Nauk. 144, 141 (1984) [Sov. Phys.-Usp. 27, 731 (1984)].

    Google Scholar 

  7. V. P. Mineev, M. M. Salomaa, and O. V. Lounasmaa,Nature 324, 333 (1986).

    Google Scholar 

  8. A. L. Fetter, inProgress in Low Temperature Physics, Vol 10, D. F. Brewer, ed. (North-Holland, New York, 1986), p. 1.

    Google Scholar 

  9. M. M. Salomaa and G. E. Volovik,Rev. Mod. Phys. 59, 533 (1987).

    Google Scholar 

  10. G. A. Kharadze, inModern Problems in Condensed Matter Sciences, W. P. Halperin and L. P. Pitaevskii, eds. (North-Holland, New York, to be published).

  11. M. M. Salomaa and G. E. Volovik,Phys. Rev. Lett. 51, 2040 (1983).

    Google Scholar 

  12. E. V. Thuneberg,Phys. Rev. Lett. 56, 359 (1986).

    Google Scholar 

  13. M. M. Salomaa and G. E. Volovik,Phys. Rev. Lett. 56, 363 (1986).

    Google Scholar 

  14. J. P. Pekola, J. T. Simola, P. J. Hakonen, M. Krusius, O. V. Lounasmaa, K. K. Nummila, G. Mamniashvili, R. E. Packard, and G. E. Volovik,Phys. Rev. Lett. 53, 584 (1984).

    Google Scholar 

  15. H. Smith, W. F. Brinkman, and S. Engelsberg,Phys. Rev. 15B, 199 (1977) and references therein.

    Google Scholar 

  16. A. I. Ahonen, M. Krusius, and M. A. Paalanen,J. Low Temp. Phys. 25, 421 (1976).

    Google Scholar 

  17. D. D. Osheroff,Physica 90B, 20 (1977).

    Google Scholar 

  18. A. D. Gongadze, G. E. Gurgenishvili, and G. A. Kharadze,Fiz. Nizk. Temp. 7, 821 (1981) [Sov. J. Low Temp. Phys. 7, 821 (1981)].

    Google Scholar 

  19. P. J. Hakonen and K. K. Nummila,Phys. Rev. Lett. 59, 1006 (1987); K. K. Nummila, P. J. Hakonen, and O. Magradze,Europhys. Lett., to be published.

    Google Scholar 

  20. M. M. Salomaa and G. E. Volovik,Phys. Rev. B 31, 203 (1985).

    Google Scholar 

  21. P. J. Hakonen, M. Krusius, M. M. Salomaa, J. T. Simola, Yu. M. Bunkov, V. P. Mineev, and G. E. Volovik,Phys. Rev. Lett. 51, 1362 (1983).

    Google Scholar 

  22. E. V. Thuneberg,Phys. Rev. B 36, 3583 (1987).

    Google Scholar 

  23. K. Maki and M. Nakahara,Phys. Rev. B 27, 4181 (1983).

    Google Scholar 

  24. P. J. Hakonen and G. E. Volovik,J. Phys. C 15, L1277 (1982).

  25. K. W. Jacobsen and H. Smith,J. Low Temp. Phys. 52, 527 (1983).

    Google Scholar 

  26. W. F. Brinkman, H. Smith, D. D. Osheroff, and E. I. Blount,Phys. Rev. Lett. 33, 624 (1974).

    Google Scholar 

  27. D. D. Osheroff, S. Engelsberg, W. F. Brinkman, and L. R. Corruccini,Phys. Rev. Lett. 34, 190 (1975).

    Google Scholar 

  28. A. I. Ahonen, T. A. Alvesalo, M. T. Haikala, M. Krusius, and M. A. Paalanen,J. Phys. C 8, L269 (1975).

    Google Scholar 

  29. P. J. Hakonen, O. T. Ikkala, S. T. Islander, T. K. Markkula, P. M. Roubeau, K. M. Saloheimo, D. I. Garibashvili, and J. S. Tsakadze,Cryogenics 23, 243 (1983).

    Google Scholar 

  30. P. J. Hakonen, M. Krusius, and H. K. Seppälä,J. Low Temp. Phys. 60, 187 (1985).

    Google Scholar 

  31. K. Maki and P. Kumar,Phys. Rev. B 16, 4805 (1977).

    Google Scholar 

  32. D. D. Osheroff, inQuantum Fluids and Solids, S. D. Trickey, E. D. Adams, and J. W. Dufty, eds., (Plenum Press, New York, 1977), p. 161.

    Google Scholar 

  33. D. D. Osheroff,Phys. Rev. Lett. 33, 1009 (1974).

    Google Scholar 

  34. A. J. Leggett,Rev. Mod. Phys. 47, 331 (1975).

    Google Scholar 

  35. R. A. Webb, R. E. Sager, and J. C. Wheatley,Phys. Rev. Lett. 35, 615 (1975).

    Google Scholar 

  36. J. W. Serene and D. Rainer,Physics Reports 101, 221 (1983).

    Google Scholar 

  37. T. A. Alvesalo, T. Haavasoja, and M. T. Manninen,J. Low Temp Phys. 45, 373 (1981).

    Google Scholar 

  38. E. K. Zeise, J. Saunders, A. I. Ahonen, C. N. Archie, and R. C. Richardson,Physica 108B, 1213 (1981).

    Google Scholar 

  39. D. S. Greywall,Phys. Rev. B 33, 7520 (1986);27, 2747 (1983).

    Google Scholar 

  40. M. A. Paalanen, M. C. Cross, W. O. Sprenger, W. van Roosbroeck, and D. D. Osheroff,J. Low Temp. Phys. 34, 607 (1979).

    Google Scholar 

  41. G. F. Spencer and G. G. Ihas,Phys. Rev. Lett. 48, 1118 (1982).

    Google Scholar 

  42. W. F. Brinkman and M. C. Cross, inProgress in Low Temperature Physics, Vol. 7a, D. F. Brewer, ed. (North-Holland, Amsterdam, 1978), p. 127.

    Google Scholar 

  43. J. W. Serene and D. Rainer, inQuantum Fluids and Solids, S. B. Trickey, E. D. Adams, and J. W. Dufty, eds. (Plenum, New York, 1977), p. 112.

    Google Scholar 

  44. J. C. Wheatley,Rev. Mod. Phys. 47, 415 (1975).

    Google Scholar 

  45. J. A. Sauls and J. W. Serene,Phys. Rev. B 24, 183 (1981).

    Google Scholar 

  46. D. F. Brewer, D. S. Betts, A. Sachrajda, and W. S. Truscott,Physica 108B, 1059 (1981).

    Google Scholar 

  47. D. Candela, N. Masuhara, D. S. Sherrill, and D. O. Edwards,J. Low Temp. Phys. 63, 369 (1986).

    Google Scholar 

  48. P. J. Hakonen, M. Krusius, and J. T. Simola,J. Low Temp. Phys., to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakonen, P.J., Krusius, M., Salomaa, M.M. et al. NMR and axial magnetic field textures in stationary and rotating superfluid3He-B. J Low Temp Phys 76, 225–283 (1989). https://doi.org/10.1007/BF00681586

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00681586

Keywords

Navigation