Skip to main content
Log in

Metabolism of amitriptyline in patients with chronic renal failure

  • Originals
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Summary

The metabolism of amitriptyline (AMT) has been studied in two groups of depressed in-patients on long term AMT therapy: 11 patients with no other major disease and 8 patients with chronic renal failure, who were being dialysed. The patients with renal insufficiency had decreased concentrations of AMT, nortriptyline (NT) and their unconjugated hydroxymetabolites compared to patients with normal kidney function. The plasma levels of conjugated products were extremely high in the uraemics. The latter metabolites are probably inert. The reduced concentration of unconjugated hydroxymetabolites, which are active compounds, may decrease the clinical effectiveness of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AMT:

amitriptyline

OHAMT:

hydroxyamitriptyline

NT:

nortriptyline

OHNT:

hydroxynortriptyline

-c:

conjugated

Nc:

non conjugated

RF:

renal failure

References

  1. Alexanderson B, Borgå O (1973) Urinary excretion of nortriptyline and five of its metabolites in man after single and multiple oral dose. Eur J Clin Pharmacol 5: 174–180

    Google Scholar 

  2. Åsberg M, Sjöqvist F (1981) Therapeutic monitoring of tricyclic antidepressants. Clinical aspects. In: Therapeutic drug monitoring (eds) A. Richens, V. Marks, London, Churchill Livingstone, 224–238

    Google Scholar 

  3. Baun de JR, Miller EC, Miller JA (1970) N-hydroxy-2-acetyl-aminofluorene sulfotransferase: its probable role in carcinogenesis and protein. (methion-S-yl) binding in rat liver. Cancer Res 30: 577–595

    Google Scholar 

  4. Bennett WM, Singer I, Golper T, Feig P, Coggins CJ (1977). Guidelines for drug therapy in renal failure. Ann Intern Med 86: 754–783

    Google Scholar 

  5. Bertilsson L, Eichelbaum M, Mellström B, Säwe J, Schulz HU, Sjöqvist F (1980) Nortriptyline and antipyrine clearance in relation to debrisoquine hydroxylation in man. Life Sci 27: 1673–1677

    Google Scholar 

  6. Bertilsson L, Mellström B, Säwe J, Sjöqvist F (1982) Pharmacogenetic aspects on the metabolism of tricyclic antidepressants. In: Langer SZ et al. (eds) Advances in the biosciences, vol 40. New vistas in depression. Pergamon Press, Oxford New York

    Google Scholar 

  7. Bertilsson L, Mellström B, Sjöqvist F (1979) Pronounced inhibition of noradrenaline uptake by 10-hydroxy-metabolites of nortriptyline. Life Sci 25: 1285–1292

    Google Scholar 

  8. Bianchetti G, Graziani G, Brancaccio D, Morganti A, Leonetti G, Manfrin M, Sega R, Gomeni R, Ponticelli C, Morselli PL (1976) Pharmacokinetics and effects of propranolol in terminal uremic patients and in patients undergoing regular dialysis treatment. Clin Pharmacokinet 1: 373–384

    Google Scholar 

  9. Biggs SR, Chasseaud LF, Hawkins DR, Midgley I (1979) Determination of amitriptyline and its major basic metabolites in human urine by high-performance liquid chromatography. Drug Metab Dispos 7 [4] 233–236

    Google Scholar 

  10. Borgå O, Hoppel C, Odar-Cederlöf I (1979) Plasma levels and renal excretion of phenytoin and its metabolites in patients with renal failure. Clin Pharmacol Ther 26 [3] 306–314

    Google Scholar 

  11. Braithwaite RA (1976) The significance of drug interactions in the evaluation of psychotropic drugs. Br J Clin Pharmacol [Suppl]: 29–34

  12. Caddy B, Fish F, Tranter J (1976) Studies on the oxidation of amitriptyline. Analyst 101: 244–254

    Google Scholar 

  13. Crammand WA, Knight PR, Lawrence JR, Higgins BA, Court JH, McNemara FM, Clarkson AR, Miller CDJ (1968) Psychological aspects of the management of chronic renal failure. Br Med J 1: 539–543

    Google Scholar 

  14. Dawling S, Lynn K, Rosser R, Braithwaite R (1981) The pharmacokinetics of nortriptyline in patients with renal failure. Br J Clin Pharmacol 12: 39–45

    Google Scholar 

  15. Dawling S, Lynn K, Rosser R, Braithwaite R (1982) Nortriptyline metabolism in chronic renal failure: metabolite elimination. Clin Pharmacol Ther 32 [3] 322–329

    Google Scholar 

  16. Eschenhof E, Rieder J (1969) Untersuchungen über das Schicksal des Antidepressivums Amitriptylin im Organismus der Ratte und des Menschen. Arzneimittelforsch 19: 957–966

    Google Scholar 

  17. Faed EM (1980) Decreased clearance of diflunisal in renal insufficiency. An alternative explanation. Br J Clin Pharmacol 10: 185–186

    Google Scholar 

  18. Farmer CJ, Snowden SA, Parsons V (1979) The prevalence of psychiatric illness among patients on home haemodialysis. Psychol Med 9: 509–514

    Google Scholar 

  19. Fisher LJ, Thies RL, Chrakowski D, Donham KJ (1980) Formation and urinary excretion of cyproheptadine glucuronide in monkey, chimpanzees, and human. Drug Metab Dispos 8 [6]: 422–424

    Google Scholar 

  20. Gram LF, Overø KF, Kirk L (1974) Influence of neuroleptics and benzodiazepines on metabolism of tricyclic antidepressants in man. Am J Psychiatr 131: 863

    Google Scholar 

  21. Gugler R, Kürten JW, Jensen CJ, Klehr U, Hartlapp J (1979) Clofibrate disposition in renal failure and acute and chronic liver disease. Eur J Clin Pharmacol 15: 341–347

    Google Scholar 

  22. Gurney C, Roth M, Garside RF, Kerr TA, Schapira K (1972) Studies in the classification of affective disorders. Br J Psychiatr 121: 162

    Google Scholar 

  23. Heikkila RE, Goldfinger SS, Orlansky H (1976) The effect of various phenothiazines and tricyclic antidepressants on the accumulation of (3H)-norepinephrine and (3H)-5-hydroxytryptamine in slices of rat occipital cortex. Res Commun Chem Pathol Pharmacol 13: 237–250

    Google Scholar 

  24. Hucker HB, Stauffer SC, Balleto AJ, White SD, Zacchei AG, Arison BH (1978) Physiological disposition and metabolism of cyclobenzaprine in the rat, dog, rhesus monkey and man. Drug Metab Dispos 6 [6] 659–672

    Google Scholar 

  25. Javid JI, Perel JM, Davis JM (1979) Inhibition of biogenic amines uptake by imipramine, desimipramine, 2-OH-imipramine and 2-OH-desimipramine in rat brain. Life Sci 24: 21–28

    Google Scholar 

  26. Kampf D, Roots I, Hildebrandt AG (1980) Urinary excretion of D-glucaric acid, an indicator of drug metabolizing enzyme activity, in patients with impaired renal function. Eur J Clin Pharmacol 18: 255–261

    Google Scholar 

  27. Kober A, Sjöholm I, Borgå O, Odar-Cederlöf (1979) Protein binding of diazepam and digitoxin in uremic and normal serum. Biochem Pharmacol 28: 1037–1042

    Google Scholar 

  28. Krijgsheld KR, Koster HJ, Scholtens E, Mulder GJ (1982) Cholestatic effect of harmol glucuronide in the rat. Prevention of harmol induced cholestasis by increased formation of harmol sulfate. J Pharmacol Exp Ther 221 [3] 731–734

    Google Scholar 

  29. Levy NB (1978) Coping with maintenance haemodialysis. Psychological considerations in the care of patients. In: Massry SG, Sellers AL (eds) Clinical aspects of uraemia and haemodialysis. Thomas, Springfield, III, USA

    Google Scholar 

  30. Levy G (1979) Decreased body clearance of diflunisal in renal insufficiency. An alternative explanation. Br J Clin Pharmacol 8: 601

    Google Scholar 

  31. Lowenthal DT, Øie S, Van Stone JC, Briggs WA, Levy G (1976) Pharmacokinetics of acetaminophen elimination by anephric patients. J Pharmacol Exp Ther 196 [3] 570–578

    Google Scholar 

  32. Mc Cormick M, Navarro V (1973) Prevalence of chronic renal failure and access to dialysis. Int J Epidemiol 2: 247–255

    Google Scholar 

  33. Meerman JHN, Mulder GJ (1981) Prevention of the hepatotoxic action of N-hydroxy-2-acetylaminofluorene in the rat by inhibition of N-O-sulfation by pentachlorophenol. Life Sci 28: 2361–2365

    Google Scholar 

  34. Mellström B, Bertilsson L, Säwe J, Schulz HU, Sjöqvist F (1981) E and Z 10-hydroxylation of nortriptyline: relationship to polymorphic debrisoquine hydroxylation. Clin Pharmacol Ther 30 [2] 189–193

    Google Scholar 

  35. Meyers M, Slikker W, Pascoe G, Vore M (1980) Characterization of cholestasis induced by estradiol-17B-D-glucuronide in the rat. J Pharmacol Exp Ther 214: 87–93

    Google Scholar 

  36. Nemeth I, Szeleczki T (1981) Enhanced drug metabolism and renal dysfunction. Br J Clin Pharmacol 11: 92–93

    Google Scholar 

  37. Odar-Cederlöf I, Borgå O (1974) Kinetics of diphenylhydantoin in uremic patients: consequences of decreased plasma protein binding. Eur J Clin Pharmacol 7: 31–37

    Google Scholar 

  38. Odar-Cederlöf I, Vessman J, Alvan G, Sjöqvist F (1977) Oxazepam disposition in uremic patients. Acta Pharmacol Toxicology [Suppl 1] 40: 52–62

    Google Scholar 

  39. Piafsky KM, Borgå O, Odar-Cederlöf I, Johansson C, Sjöqvist F (1978) Increased plasma protein binding of propranolol and chlorpromazine mediated by disease-induced elevations of plasma α1 acid glycoprotein. N Engl J Med 299: 1435–1439

    Google Scholar 

  40. Potter WZ, Calil HM, Manian AA, Zavadil AP, Goodwin FK (1979) Hydroxylated metabolites of tricyclic antidepressants: preclinical assessment of activity. Biol Psychiatry 14 [4]: 601–613

    Google Scholar 

  41. Reidenberg MM (1977) The binding of drugs to plasma proteins and the interpretation of measurement of plasma concentrations of drugs in patients with poor renal function. Am J Med 62: 466–470

    Google Scholar 

  42. Reidenberg MM (1977) The biotransformation of drugs in renal failure. Am J Med 62: 482–485

    Google Scholar 

  43. Reidenberg MM, Odar-Cederlöf I, Bahr von C, Borgå O, Sjöqvist F (1971) Protein binding of diphenylhydantoin and desmethylimipramine in plasma from patients with poor renal function. N Engl J Med 264–267

  44. Rollins DE, Klaassen CD (1979) Biliary excretion of drugs in man. Clin Pharmacokinet 4: 368–379

    Google Scholar 

  45. Rosser R (1976) Depression during renal dialysis and following transplantation. Proc R Soc Med 69: 832–834

    Google Scholar 

  46. Sandoz M, Vandel S, Vandel B, Bonin B, Allers G, Volmat R (1983) Biotransformation of amitriptyline in alcoholic depressive patients. Eur J Clin Pharmacol 24: 615–621

    Google Scholar 

  47. Sellman R, Kanto J, Raijola E, Pekkarinen (1975) Induction effect of diazepam on its own metabolism. Acta Pharmacol Toxicol 37: 345–351

    Google Scholar 

  48. Sjöqvist F, Berglund F, Borgå O, Hammer W, Andersson S, Thorstrand C (1969) The pH dependent excretion of monomethylated tricyclic antidepressant in dog and man. Clin Pharmacol Ther 10: 826–833

    Google Scholar 

  49. Stevenson IH, Browning M, Crooks J (1972) Changes in human drug metabolism after long term exposure to hypnotics. Br Med J 4: 322–324

    Google Scholar 

  50. Tillement JP, Lhoste F, Giudicelli JF (1978) Diseases and drug protein binding. Clin Pharmacokinet 3: 144–154

    Google Scholar 

  51. Vandel B, Sandoz M, Vandel S, Allers G, Volmat R (1982) Biotransformation of amitriptyline in depressive patients — urinary excretion of seven metabolites. Eur J Clin Pharmacol 22 [3] 239–245

    Google Scholar 

  52. Vandel B, Vandel S, Allers G, Bechtel P, Volmat R (1979) Interaction between amitriptyline and phenothiazine in man: effect on plasma concentration of amitriptyline and its metabolite nortriptyline and the correlation with clinical response. Psychopharmacology 65: 187–190

    Google Scholar 

  53. Vandel S, Vandel B, Sandoz M, Allers G, Bechtel P, Volmat R (1978) Clinical response and plasma concentration of amitriptyline and its metabolite nortriptyline. Eur J Clin Pharmacol 14: 185–190

    Google Scholar 

  54. Verbeeck RK (1982) Glucuronidation and disposition of drug glucuronides in patients with renal failure. A review. Drug Metab Dispos 10 [1] 87–89

    Google Scholar 

  55. Verbeeck RK, Branch RA, Wilkinson GR (1981) Drug metabolites in renal failure: Pharmacokinetic and clinical implications. Clin Pharmacokinet 6: 329–345

    Google Scholar 

  56. Verbeeck R, Tjandramaga TB, Mullie A, Verbesselt R, Verberckmoes R, De Schepper PJ (1979) Biotransformation of diflunisal and renal excretion of its glucuronides in renal insufficiency. Br J Clin Pharmacol 7: 273–282

    Google Scholar 

  57. Verbeeck R, Tjandramaga TB, Verberckmoes R, De Schepper PJ (1976) Biotransformation and excretion of lorazepam in patients with chronic renal failure. Br J Clin Pharmacol 3: 1033–1039

    Google Scholar 

  58. Walle Th, Conradi EC, Walle UK, Fagan TC, Gaffney TE (1979) Propranolol glucuronide cumulation during long-term propranolol therapy: a proposed storage mechanism for propranolol. Clin Pharmacol Ther 26 [6]: 686–695

    Google Scholar 

  59. Watabe T, Ishizuka T, Isobe M, Ozawa N (1982) A 7-hydroxymethyl sulfate ester as an active metabolite of 7,12-dimethylbenz (a) anthracene. Science 215: 403–404

    Google Scholar 

  60. Yousef IM, Tuchweber B, Vonk RJ, Masse D, Audet M, Roy CC (1981) Lithocholate cholestasis-sulfated glycolithocholate induced intrahepatic cholestasis in rats. Gastroenterology 80: 233–241

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandoz, M., Vandel, S., Vandel, B. et al. Metabolism of amitriptyline in patients with chronic renal failure. Eur J Clin Pharmacol 26, 227–232 (1984). https://doi.org/10.1007/BF00630290

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00630290

Key words

Navigation