Skip to main content
Log in

Mass transfer between rough surfaces and solutions containing drag-reducing polymers

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Rates of electrochemical mass transfer were measured between finned rotating cylinders and solutions containing drag-reducing polymers. Variables studied were: Reynolds number, polymer concentration and fin height. Polyox and carboxymethyl cellulose (CMC) were used as drag-reducing polymers with concentrations ranging from 10–100 ppm for polyox and from 10–500 ppm for CMC. Cylinders with longitudinal fins ofe/d ranging from 0·0185–0·075 were used. Reynolds number was varied between 1000–10000. It was found that the presence of fins on the cylinder surface reduces the adverse effect of the polymer on the rate of mass transfer, the higher the fin height the lower is the ability of the polymer to reduce the rate of mass transfer. Mass transfer data for solutions containing polyox were correlated by the equation: (St) = 0.765(Re)♪-0.36(Sc)−0.669(e/d)0.36 Mass transfer data for solutions containing CMC were correlated by the equation: (St) = 1.704(Re)−0.36(Sc)−0.75(e/d)0.315

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

I L :

limiting current density based on the projected area of the electrode (A cm−2)

K :

mass transfer coefficient (cm s−1)

Z :

number of electrons involved in the electrode reaction

C :

ferricyanide concentration (mol cm−3)

F :

Faraday's constant

u :

dynamic viscosity (g cm−1 s−1)

ρ :

solution density (g cm−3)

ω :

angular velocity (rad s−1)

V :

peripheral velocity (cm s−1)

D :

diffusion coefficient of ferricyanide ion (cm2 s−1)

d :

cylinder diameter (cm)

e :

fin height (cm)

(Sc):

u/(ρD), Schmidt number

(Re):

ρvd/u, Reynolds number

(St):

K/V, Stanton number

References

  1. J. W. Hoyt,Trans. Amer. Soc. Mech. Engrs. 94D (1972) 258.

    Google Scholar 

  2. G. H. Sedahmed and R. G. Griskey,A. I. Ch. E. J. 18 (1972) 138.

    Google Scholar 

  3. G. H. Sedahmed, A. M. Al-Taweel and A. Abdel-Khalik,Trans. Inst. Chem. Engrs. 53 (1975) 191.

    Google Scholar 

  4. G. H. Sedahmed, B. A. Abd-El-Naby and A. Abdel-Khalik,J. Appl. Electrochem. 7 (1976) 355.

    Google Scholar 

  5. G. H. Sedahmed, B. A. Abd-El-Naby and A. Abdel-Khalik,Corros. Sci. 17 (1977) 865.

    Google Scholar 

  6. G. H. Sedahmed, B. A. Abd-El-Naby and A. Abdel-Khalik,J. Appl. Electrochem. 8 (1978) 473.

    Google Scholar 

  7. A. M. Al-Taweel, G. H. Sedahmed, H. A. Farag and A. Abdel-Khalik,Chem. Eng. J.,15 (1978) 81.

    Google Scholar 

  8. C. Deslouis, I. Epelboin, B. Tribollet and L. Viet,Electrochem. Acta 20 (1975) 909.

    Google Scholar 

  9. J. Buston and D. H. Glass,International Conference on drag reduction BHRA, Cranfield (1974) Paper A3–41.

  10. P. S. Virk and T. Suraiya,International Conference on drag reduction BHRA, Cambridge (1977) Paper G3-41.

  11. G. A. McConaghy and T. J. Hanratty,A. I. Ch. E. J. 23 (1977) 493.

    Google Scholar 

  12. G. H. Sedahmed and L. W. Shemilt,Lett. Heat Mass Trans. 3 (1976) 499.

    Google Scholar 

  13. G. H. Sedahmed, A. Abdel-Khalik, A. M. Abdallah and M. M. Fatahat,J. Appl. Electrochem, to be published.

  14. V. G. Levich, ‘Physicochemical Hydrodynamics’, Prentice-Hall Inc., New York (1962).

    Google Scholar 

  15. P. M. Debrule and R. H. Sabersky,Int. J. Heat Mass Trans. 17 (1974) 529.

    Google Scholar 

  16. M. Poreh, Naval undersea research and development center TP 222 (1971).

  17. J. G. Spangler, ‘Viscous drag reduction’ (edited by C. S. Wells) Plenum Press, New York (1969) p. 131.

    Google Scholar 

  18. H. Brandt, A. T. McDonald and F. W. Boyle,ibid‘ p. 159.

    Google Scholar 

  19. G. I. Barenblatt, V. A. Corodtsov and V. N. Kala Shinkov,Heat Trans. Sov. Res. 1 (1969) 102.

    Google Scholar 

  20. W. R. Amfilokhiev and A. M. Ferguson,Proceedings of the 12th International Towing Tank conference, Rome (1969).

  21. G. Fortuna and T. J. Hanratty,Chem. Eng. Prog. Symp. Ser. 67 (1971) 111, 90.

    Google Scholar 

  22. E. M. Greshilov, A. V. Evtushenko, L. M. Lyamshev and N. L. Shirokova,J. Eng. Phys. (USSR) 25 (1973) 1493.

    Google Scholar 

  23. G. A. McConaghy, PhD thesis, University of Illinois (1974).

  24. R. J. Pirih and W. M. Swanson,Canad. J. Chem. Eng. 50 (1972) 221.

    Google Scholar 

  25. A. R. Taylor and S. Middleman,A. I. Ch. E. J. 20 (1974) 454.

    Google Scholar 

  26. S. K. Stynes and J. E. Myers,ibid 10 (1964) 4, 37.

    Google Scholar 

  27. J. G. Knudsen and D. L. Katz,Chem. Eng. Progr. 46 (1950) 490.

    Google Scholar 

  28. D. J. Maull and L. F. East,J. Fluid Mech. 16 (1963) 620.

    Google Scholar 

  29. R. A. Seban and J. Fox,Proceedings of 1961–62 Heat Transfer Conference, New York (1963).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedahmed, G.H., Abdel Khalik, A., Abdallah, A.M. et al. Mass transfer between rough surfaces and solutions containing drag-reducing polymers. J Appl Electrochem 9, 567–572 (1979). https://doi.org/10.1007/BF00610943

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00610943

Keywords

Navigation