Skip to main content
Log in

The role of fluorine and oxygen fugacity in the genesis of the ultrapotassic rocks

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The effects of H2O, CO2, CH4 and HF on partial melting of a model phlogopite harzburgite mantle are considered with regard to the production of ultrapotassic magmas. Fluorine has a polymerising effect in H2O-poor conditions, but in the presence of abundant H2O where HF rather than F is dominant, the overall effect is depolymerisation. Methane also dissolves by forming (OH) groups, and so has a depolymerising effect. Group I ultrapotassic rocks (lamproites) probably originate from primary magmas with SiO2 contents ranging from around 40 wt% to at least 52 wt%. This range can be explained by differing depths of origin from a similar source with a similar reduced H2O-CH4-HF volatile mixture. The formation of silica-rich initial melts from a model phlogopite harzburgite is assisted by the presence of CH4 and HF. Dissociation of less than 0.1 wt% H2O, driven by H2 loss, is sufficient to cause oxidation during emplacement to observed oxidation states. Silica-poor ultrapotassic rocks could be produced at higher pressures in a reduced environment, or in an oxidised environment with high CO2/(CO2 + H2O) ratios.

Group II (African Rift) potassic rocks may originate in H2O-poor conditions in which fluorine will maintain a large phlogopite phase field, so that initial melts will be magnesian and silica-undersaturated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki K, Ishikawa K, Kanisawa S (1981) Fluorine geochemistry of basaltic rocks from continental and oceanic regions and petrogenetic application. Contrib Mineral Petrol 76:53–59

    Google Scholar 

  • Arculus RJ (1985) Oxidation status of the mantle: past and present. Ann Rev Earth Planet Sci 13:75–95

    Google Scholar 

  • Arculus RJ, Delano JW (1981) Intrinsic oxygen fugacity measurements: techniques and results for spinels from upper mantle peridotites and megacryst assemblages. Geochim Cosmochim Acta 45:899–913

    Google Scholar 

  • Arculus RJ, Dawson JB, Mitchell RH, Gust DA, Holmes RD (1984) Oxidation states of the upper mantle recorded by megacryst ilmenite in kimberlite and type A and B spinel lherzolites. Contrib Mineral Petrol 85:85–94

    Google Scholar 

  • Arima M, Edgar AD (1981) Substitution mechanisms and solubility of titanium in phlogopites from rocks of probable mantle origin. Contrib Mineral Petrol 77:288–295

    Google Scholar 

  • Arima M, Edgar AD (1983a) High pressure experimental studies on a katungite and their bearing on the genesis of some potassium-rich magmas of the west branch of the African Rift. J Petrol 24:166–187

    Google Scholar 

  • Arima M, Edgar AD (1983b) A high pressure experimental study on a magnesian-rich leucite lamproite from the West Kimberley area, Australia: petrogenetic implications. Contrib Mineral Petrol 84:228–234

    Google Scholar 

  • Atkinson WJ, Hughes FE, Smith CB (1984) A review of the kimberlitic rocks of western Australia. In: Kornprobst J (ed) Kimberlites I: Kimberlites and related rocks, pp 195–224

  • Bachinski SW, Simpson EL (1984) Ti-phlogopites of the Shaw's Cove minette: a comparison with micas of other lamprophyres, potassic rocks, kimberlites and mantle xenoliths. Am Mineral 69:41–56

    Google Scholar 

  • Bailey DK (1978) Continental rifting and mantle degassing. In: Neumann ER, Ramberg IB (eds) Petrology and Geochemistry of continental rifts, D Riedel, p 1–13

  • Bailey DK (1980) Volcanism, earth degassing and replenished lithosphere mantle. Phil Trans Soc Lond Ser A 297:309–322

    Google Scholar 

  • Barton M (1979) A comparative study of some minerals occurring in the potassium-rich alkaline rocks of the Leucite Hills, Wyoming, the Vico volcano, western Italy, and the Toro-Ankole region, Uganda. Neues Jahrb Mineral Abh 137:113–134

    Google Scholar 

  • Barton M, Hamilton DL (1978) Water-saturated melting relations to 5 kilobars of three Leucite Hills lavas. Contrib Mineral Petrol 66:41–49

    Google Scholar 

  • Barton M, Hamilton DL (1979) The melting relationships of a madupite from the Leucite Hills, Wyoming, to 30 kb. Contrib Mineral Petrol 69:133–142

    Google Scholar 

  • Barton M, Hamilton DL (1982) Water-undersaturated melting experiments, bearing upon the origin of potassium-rich magmas. Mineral Mag 45:267–278

    Google Scholar 

  • Barton M, Varekamp JC, van Bergen MJ (1982) Complex zoning of clinopyroxenes in the lavas of Vulsini, Latium, Italy: evidence for magma mixing. J Volcanol Geotherm Res 14:361–388

    Google Scholar 

  • Bohlen SR, Peacor DR, Essene EJ (1980) Crystal chemistry of a metamorphic biotite and its significance in water barometry. Am Mineral 65:55–62

    Google Scholar 

  • Brey GP, Green DH (1975) The role of CO2 in the genesis of olivine melilitite. Contrib Mineral Petrol 49:93–103

    Google Scholar 

  • Brey GP, Green DH (1976) Solubility of CO2 in olivine melilitite at high pressures and role of CO2 in the earth's upper mantle. Contrib Mineral Petrol 55:217–230

    Google Scholar 

  • Burke K (1963) Dissolved gases in East African Lakes. Nature 198:568–569

    Google Scholar 

  • Burnham CW (1979) The importance of volatile constituents. In: The Evolution of the Igneous rocks — Fiftieth Anniversary Perspectives. Yoder HS (ed) Princeton University Press, New Jersey, pp 439–482

    Google Scholar 

  • Carmichael ISE (1967) The mineralogy and petrology of the volcanic rocks from the Leucite Hills, Wyoming. Contrib Mineral Petrol 15:24–66

    Google Scholar 

  • Carmichael ISE, Nicholls JW (1967) Iron-titanium oxides and oxygen fugacities in volcanic rocks. J Geophys Res 72:4665–4687

    Google Scholar 

  • Edgar AD, Arima M (1981) Geochemistry of three potassium-rich ultrabasic lavas from the west branch of the African Rift: interferences on their geneses. Neues Jahrb Mineral Monatsh H12:539–552

    Google Scholar 

  • Edgar AD, Green DH, Hibberson WO (1976) Experimental petrology of a highly potassic magma. J Petrol 17:339–356

    Google Scholar 

  • Eggler DH (1974) Effect of CO2 on the melting of peridotite. Carnegie Inst Washington Yearb 73:215–224

    Google Scholar 

  • Eggler DH (1978) The effect of CO2 upon melting in the system Na2O-CaO-Al2O3-SiO2-CO2 to 35 kb, with an analysis of melting in a peridotite -H2O-CO2 system. Am J Sci 278:305–343

    Google Scholar 

  • Eggler DH (1983) Upper mantle oxidation state: evidence from olivine-orthopyroxene-ilmenite assemblages. Geophys Res Lett 10:365–368

    Google Scholar 

  • Eggler DH, Baker DR (1982) Reduced volatiles in the system C-O-H: implications to mantle melting, fluid formation, and diamond genesis. In: Akimoto S, Manghnani M (eds) High pressure research in geophysics. Center for Academic Publications, Tokyo, pp 237–250

    Google Scholar 

  • Foley SF (1985) The oxidation state of lamproitic magmas. Tschermaks Mineral Petrogr Mitt 34:217–238

    Google Scholar 

  • Foley SF, Taylor WR, Green DH (1986a) The effect of fluorine on phase relationships in the system KAlSiO4-Mg2SiO4- SiO2 and the solution mechanism of fluorine in silicate melts. Contrib Mineral Petrol 93:46–55

    Google Scholar 

  • Foley SF, Venturelli G, Green DH, Toscani L (1986b) The ultrapotassic rocks: Characteristics, Classification, and constraints for petrogenetic models. Earth Sci Rev (in press)

  • Fornaseri M, Ventriglia U, Scherillo A (1963) La regione vulcanica dei Colli Albani, Vulcano Laziale. CNR Rome

    Google Scholar 

  • Freund F, Kathrein H, Wengeler H, Knobel R, Heinen HJ (1980) Carbon in solid solution in forsterite — a key to the untractable nature of reduced carbon in terrestrial and cosmogenic rocks. Geochim Cosmochim Acta 44:1319–1333

    Google Scholar 

  • Freund F, Wengeler H, Kathrein H, Knobel R, Oberheuser G, Maiti GC, Reil D, Kotz J (1983) Hydrogen and carbon derived from dissolved H2O and CO2 in minerals and melts. Bull Mineral 106:185–200

    Google Scholar 

  • Frost BR (1979) Mineral equilibria involving mixed volatiles in a C-O-H fluid phase: the stabilities of graphite and siderite. Am J Science 27:1035–1059

    Google Scholar 

  • Fuster JM, Gastesi P, Sagredo J, Fermoso ML (1967) Las rocas lamproiticas del SE de Espana. Estud Geolog 23:35–69

    Google Scholar 

  • Gerlach TM (1980) Chemical characteristics of the volcanic gases from Nyiragongo lava lake and the generation of CH4-rich fluid inclusions in alkaline rocks. J Volcanol Geotherm Res 8:177–189

    Google Scholar 

  • Haggerty SE, Tompkins LA (1983) Redox state of Earth's upper mantle from kimberlitic ilmenites. Nature 303:295–300

    Google Scholar 

  • Hawkesworth CJ, Vollmer R (1979) Crustal contamination versus enriched mantle:143Nd/144Nd and87Sr/86Sr evidence from the Italian volcanics. Contrib Mineral Petrol 69:151–165

    Google Scholar 

  • Holmes A (1937) The petrology of katungite. Geol Mag 74:200–219

    Google Scholar 

  • Holmes A, Harwood HF (1932) Petrology of the volcanic fields east and south-east of Ruwenzori, Uganda. J Geol Soc London 88:370–439

    Google Scholar 

  • Iddings JP, Morley EW (1915) Contributions to the petrography of Java and Celebes. J Geol 23:231–245

    Google Scholar 

  • Jaques AL, Lewis JD, Smith CB, Gregory GP, Ferguson J, Chappell BW, McCulloch MT (1984) The diamond bearing ultrapotassic (lamproitic) rocks of the West Kimberley region, Western Australia. In: Kornprobst J (ed) Kimberlites I: Kimberlites and related rocks, pp 225–254

  • Kennedy CS, Kennedy GC (1976) The equilibrium boundary between graphite and diamond. J Geophys Res 81:2467–2470

    Google Scholar 

  • Kilinc AI, Carmichael ISE, Rivers ML, Sack RO (1983) The ferricferrous ratio of natural silicate liquids equilibrated in air. Contrib Mineral Petrol 83:136–140

    Google Scholar 

  • Kuehner SM, Edgar AD, Arima M (1981) Petrogenesis of the ultrapotassic rocks from the Leucite Hills, Wyoming. Am Mineral 66:663–677

    Google Scholar 

  • Kushiro I (1968) Compositions of magmas formed by partial zone melting of the earth's upper mantle. J Geophys Res 73:619–637

    Google Scholar 

  • Kushiro I (1972) Effect of water on the compositions of magmas formed at high pressures. J Petrol 13:311–334

    Google Scholar 

  • Kushiro I (1980) Changes with pressure of degree of partial melting and K2O content of liquids in the system Mg2SiO4-KAl-SiO4-SiO2. Carnegie Inst Washington Yearb 79:267–271

    Google Scholar 

  • Lloyd FE (1981) Upper mantle metasomatism beneath a continental rift: clinopyroxenes in alkali mafic lavas and nodules from South West Uganda. Mineral Mag 44:315–323

    Google Scholar 

  • Lloyd FE, Bailey DK (1975) Light element metasomatism of the continental mantle: the evidence and the consequences. Phys Chem Earth 9:389–416

    Google Scholar 

  • Luth WC (1967) Studies in the system KAlSiO4-Mg2SiO4-SiO2-H2O. I. Inferred phase relations and petrologic applications. J Petrol 8:372–416

    Google Scholar 

  • Mathez EA (1984) Influence of degassing on oxidation states of basaltic magmas. Nature 310:371–375

    Google Scholar 

  • Mo X, Carmichael ISE, Rivers ML, Stebbins JB (1982) The partial molar volume of Fe2O3 in multicomponent silicate liquids and the pressure dependence of oxygen fugacity in magmas. Mineral Mag 45:237–245

    Google Scholar 

  • Munoz JL, Eugster HP (1969) Experimental control of fluorine reactions in hydrothermal systems. Am Mineral 54:943–959

    Google Scholar 

  • Nicholls JW (1980) A simple thermodynamic model for estimating the solubility of H2O in magmas. Contrib Mineral Petrol 74:211–220

    Google Scholar 

  • Nixon PH, Hornung G (1973) The carbonatite lavas and tuffs near Fort Portal, western Uganda. Inst Geol Sci Overseas Geol Mineral Res 41:168–179

    Google Scholar 

  • O'Neill HS, Wall VJ (1982) Oxygen fugacities from the assemblage olivine-orthopyroxene-spinel. Research School Earth Sciences, Australian National University, Annual Report, pp 177–179

  • Pouclet A (1980a) Les laves du rift de l'Afrique centrale; revue des données pétrographiques et chimiques. Essai de magmatologie. Rapp Annu Mus Afr Centr 1979:81–128

    Google Scholar 

  • Pouclet A (1980b) Contribution à la systématique des laves alcalines, les laves du rift de l'Afrique centrale (Zaire-Uganda). Bull Volcanol 43:527–540

    Google Scholar 

  • Pouclet A, Menot R-P, Piboule M (1984) Differenciation des laves de l'Afrique Centrale (Rift Ouest) Contribution de l'analyse statistique multivariée. Neues Jahrb Mineral Abh 149:283–308

    Google Scholar 

  • Rosenberg PE, Foit FF (1977) Fe2+-F avoidance in silicates. Geochim Cosmochim Acta 41:345–346

    Google Scholar 

  • Ryabchikov ID, Green DH (1978) The role of carbon dioxide in the petrogenesis of highly potassic magmas. In: Problems of petrology of the earth's crust and upper mantle. Inst Geol Geofiz Nauka Novosibirsk 403:49–64

    Google Scholar 

  • Ryabchikov ID, Green DH, Wall VJ, Brey GP (1981) The oxidation state of carbon in the reduced-velocity zone. Geochem Int 18:148–158

    Google Scholar 

  • Sanz J, Stone WEE (1979) NMR study of micas. II. Distribution of Fe2+, F, and OH in the octahedral sheet of phlogopites. Am Mineral 64:119–126

    Google Scholar 

  • Sato M (1978) Oxygen fugacity of basaltic magmas and the role of gas-forming elements. Geophys Res Lett 5:447–449

    Google Scholar 

  • Scott BH (1977) Petrogenesis of kimberlites and associated potassic lamprophyres from central West Greenland. Ph D thesis, Edinburgh University

  • Scott BH (1979) Petrogenesis of kimberlites and associated potassic lamprophyres from central west Greenland. In: Boyd FR, Meyer HOA (eds) Kimberlites, diatremes and diamonds: their geology, petrology, and geochemistry. Am Geophys Union, pp 190–205

  • Scott BH (1981) Kimberlite and lamproite dykes from Holsteinsborg, West Greenland. Medd om Grøn. Geosci 4:1–24

    Google Scholar 

  • Scott-Smith BH, Skinner EMW (1984) A new look at Prairie Creek, Arkansas. In: Kornprobst J (ed) Kimberlites. I. Kimberlites and related rocks, pp 255–283

  • Sekine T, Wyllie PJ (1982) Phase relationships in the system KAl-SiO4-Mg2SiO4-SiO2-H2O as a model for hybridisation between hydrous siliceous melts and peridotite. Contrib Mineral Petrol 79:368–374

    Google Scholar 

  • Sheraton JW, Cundari A (1980) Leucitites from Gaussberg, Antarctica. Contrib Mineral Petrol 71:417–427

    Google Scholar 

  • Sheraton JW, England RN (1980) Highly potassic mafic dykes from Antarctica. J Geol Soc Aust 27:129–135

    Google Scholar 

  • Taylor WR (1985) The role of C-O-H fluids in upper mantle processes: a theoretical, experimental and spectroscopic study. Ph D thesis, University of Tasmania, Hobart

    Google Scholar 

  • Van Kooten GK (1980) Mineralogy, petrology, and geochemistry of an ultrapotassic basaltic suite, central Sierra Nevada, California, USA. J Petrol 21:651–684

    Google Scholar 

  • Velde D (1979) Trioctahedral micas in melilite-bearing eruptive rocks. Carnegie Inst Washington Yearb 78:468–475

    Google Scholar 

  • Venturelli G, Capedri S, di Battistini G, Crawford AJ, Kogarko LN, Celestini S (1984) The ultrapotassic rocks from southeastern Spain. Lithos 17:37–54

    Google Scholar 

  • Von Knorring O, du Bois CGB (1961) Carbonatitic lava from Fort Portal area in western Uganda. Nature 192:1064–1065

    Google Scholar 

  • Wendlandt RF, Eggler DH (1980a) The origins of potassic magmas: I. Melting relations in the systems KAlSiO4-Mg2SiO4-SiO2 and KAlSiO4-MgO-SiO2-CO2 to 30 kilobars. Am J Sci 280:385–420

    Google Scholar 

  • Wendlandt RF, Eggler DH (1980b) Stability of sanidine+forsterite and its bearing on the genesis of potassic magmas and the distribution of potassium in the upper mantle. Earth Planet Sci Lett 51:215–220

    Google Scholar 

  • Wendlandt RF, Eggler DH (1980c) The origins of potassic magmas: II. Stability of phlogopite in natural spinel lherzolite and in the system KAlSiO4-MgO-SiO2-H2O-CO2 at high pressures and high temperatures. Am J Sci 280:421–458

    Google Scholar 

  • Woermann E, Rosenhauer M (1985) Fluid phases and the redox state of the Earth's mantle: extrapolations based on experimental, phase-theoretical and petrological data. Fortschr Mineral 63:263–349

    Google Scholar 

  • Wyllie PJ (1978) Mantle fluid compositions buffered in peridotite-CO2-H2O by carbonates, amphibole, and phlogopite. J Geol 86:687–713

    Google Scholar 

  • Wyllie PJ (1979) Magmas and volatile components. Am Mineral 64:469–500

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foley, S.F., Taylor, W.R. & Green, D.H. The role of fluorine and oxygen fugacity in the genesis of the ultrapotassic rocks. Contr. Mineral. and Petrol. 94, 183–192 (1986). https://doi.org/10.1007/BF00592935

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00592935

Keywords