Skip to main content
Log in

Strategy for identifying the gene encoding the DNA polymerase of molluscum contagiosum virus type 1

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Molluscum contagiosum virus (MCV) is a member of the family Poxviridae and pathogenic to humans. MCV causes benign epidermal tumors mainly in children and young adults and is a common pathogen in immunecompromised individuals. The viral DNA polymerase is the essential enzyme involved in the replication of the genome of DNA viruses. The identification and characterization of the gene encoding the DNA polymerase of molluscum contagiosum virus type 1 (MCV-1) was carried out by PCR technology and nucleotide sequence analysis. Computer-aided analysis of known amino acid sequences of DNA polymerases from two members of the poxvirus family revealed a high amino acid sequence homology of about 49.7% as detected between the DNA polymerases of vaccinia virus (genus Orthopoxvirus) and fowlpoxvirus (genus Avipoxvirus). Specific oligonucleotide primers were designed and synthesized according to the distinct conserved regions of amino acid sequences of the DNA polymerases in which the codon usage of the MCV-1 genome was considered. Using this technology a 228 bp DNA fragment was amplified and used as hybridization probe for identifying the corresponding gene of the MCV-1 genome. It was found that the PCR product was able to hybridize to theBamHI MCV-1 DNA fragment G (9.2 kbp, 0.284 to 0.332 map units). The nucleotide sequence of this particular region of the MCV-1 genome (7267 bp) between map coordinates 0.284 and 0.315 was determined. The analysis of the DNA sequences revealed the presence of 22 open reading frames (ORFs-1 to-22). ORF-13 (3012 bp; nucleotide positions 6624 to 3612) codes for a putative protein of a predicted size of 115 kDa (1004 aa) which shows 40.1% identity and 35% similarity to the amino acid sequences of the DNA polymerases of vaccinia, variola, and fowlpoxvirus. In addition significant homologies (30% to 55%) were found between the amino acid sequences of the ORFs 3,-5,-9, and-14 and the amino acid sequences of the E6R, E8R, E10R, and a 7.3 kDa protein of vaccinia and variola virus, respectively. Comparative analysis of the genomic positions of the loci of the detected viral genes including the DNA polymerases of MCV-1, vaccinia, and variola virus revealed a similar gene organization and arrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FranckiR.I.B., FauquetC.M., KnudsonD.L., and BrownF. (eds.) The classification and nomenclature of viruses: Summary of the results of the meetings of the International Commitee and Taxonomy of Viruses in Berlin. Springer Verlag Wien, New York, P. 97, 1992.

    Google Scholar 

  2. DaraiG., ReisnerH., ScholzJ., SchnitzlerP., and Lorbacher de RuizH., J Med Virol18, 29–39, 1986.

    Google Scholar 

  3. BlakeN.W., PorterC.D., ArchardL.C., J Virol65, 3583–3589, 1991.

    Google Scholar 

  4. PostlethwaiteR., Arch Environ Health21, 432–452, 1970.

    Google Scholar 

  5. EpsteinW.L., Semin Dermatol11, 184–189, 1992.

    Google Scholar 

  6. HellierF.F., Br J Dermatol85, 398, 1971.

    Google Scholar 

  7. MayumaH., YamokaK., TsutsuiT., Eur J Pediatr145, 99–103, 1986.

    Google Scholar 

  8. CottonD.W., CooperC., BarrettD.F., and LeppardB.J., Br J Dermatol116, 871–876, 1987.

    Google Scholar 

  9. HiraS.K., WadhawanD., KamangaJ., J Am Acad Dermatol19, 451–457, 1988.

    Google Scholar 

  10. MatisW.L., TrianaA., ShapiroR., J Am Acad Dermatol17, 746–751, 1987.

    Google Scholar 

  11. SchwartzJ.J. and MyskowskiP.L., J Am Acad Dermatol27, 583–588, 1992.

    Google Scholar 

  12. ThompsonC.H., deZwart-SteffeR.T., and DonovanB., Int J STD AIDS3, 101–106, 1992.

    Google Scholar 

  13. ParrA.P., BurnettJ.W., GaronC.F., Virology81, 247–256, 1977.

    Google Scholar 

  14. PorterC.D., MuhlemannM.F., CreamJJ., and ArchardL.C., Epidemiol Infect99, 563–567, 1987.

    Google Scholar 

  15. BugertJ.J. and DaraiG., J Med Virol33, 211–217, 1991.

    Google Scholar 

  16. McFaddenG., PadeW.E., PurresJ., and DalesS., Virology94, 297–313, 1979.

    Google Scholar 

  17. BullerR.M. and PalumboG., Microbiol Rev55, 80–122, 1992.

    Google Scholar 

  18. ScholzJ., Rösen-WolffA., BugertJ., ReisnerH., WhiteM.J., DaraiG., and PostlethwaiteR., J Infect Dis158, 898–900, 1988.

    Google Scholar 

  19. ScholzJ., Rösen-WolffA., BugertJ., ReisnerH., WhiteM.J., DaraiG., and PostlethwaiteR., J Med Virol27, 87–90, 1989.

    Google Scholar 

  20. PorterC.D. and ArchardL.C., J Med Virol38, 1–6, 1992.

    Google Scholar 

  21. BugertJ.J., Rösen-WolffA., and DaraiG., Virus Genes3, 159–173, 1989.

    Google Scholar 

  22. BugertJ.J., RaabK., Rösen-WolffA., JanssenW., and DaraiG., Virology192, 391–396, 1993.

    Google Scholar 

  23. MossB., Annual Rev Biol59, 661–668, 1990.

    Google Scholar 

  24. EarlP.L., JonesE.V., and MossB., Proc Natl Acad Sci83, 3659–3663, 1986.

    Google Scholar 

  25. TraktmanP., KelvinM., and PachecoS., J Virol63 (2), 841–846, 1989.

    Google Scholar 

  26. BinnsM.M., StenzlerL., TomleyF.M., CampbellJ., and BoursnellM.E.G., Nucleic Acids Res15, 6563–6573, 1987.

    Google Scholar 

  27. SonntagK.-C., ClauerU., BugertJ.J., SchnitzlerP., and DaraiG., Virology210, 471–478, 1995.

    Google Scholar 

  28. HadaschR.P., BugertJ.J., JanssenW., and DaraiG., Intervirol36, 32–43, 1993.

    Google Scholar 

  29. MassungR.F., LiuL.-L., QiJ., KnightJ.C., YuranT.E., KerlavageA.R., ParsonsJ.M., VenterJ.C., and EspositoJ.J., Virology201, 215–240, 1994.

    Google Scholar 

  30. GoebelS.J., JohnsonG.P., PerkusM.E., DavisS.W., WinslowJ.P., and PaolettiE., Virology179, 247–266, 1990.

    Google Scholar 

  31. GoebelS.J., JohnsonG.P., PerkusM.E., DavisS.W., WinslowJ.P., and PaolettiE., Virology179, 517–563, 1990.

    Google Scholar 

  32. JohnsonG.P., GoebelS.J., and PaolettiE., Virology196, 381–401, 1993.

    Google Scholar 

  33. WongS.W., WahlA.F., YuanP.-M., AraiN., PearsonB.E., AraiK.-I., KornD., HunkapillerM.W., and WangT.S.-F., EMBO J7, 37–47, 1988.

    Google Scholar 

  34. MartinsA., RibeiroG., MarquesM.I., and CostaJ.V., Nucl Acids Res22, 208–213, 1992.

    Google Scholar 

  35. DavisonA.J. and MossB., J Mol Biol210, 749–769, 1989.

    Google Scholar 

  36. DavisonA.J. and MossB., J Mol Biol210, 771–784, 1989.

    Google Scholar 

  37. SchnitzlerP., SonntagK.C., MüllerM., JanssenW., BugertJ.J., KooninE.V., and DaraiG., J Gen Virol75, 1557–1567, 1994.

    Google Scholar 

  38. MüllerM., SchnitzlerP., KooninE.V., and DaraiG., J Gen Vir76, 1099–1107, 1995.

    Google Scholar 

  39. FlemingS.B., FraserK.M., MercerA.A., and RobinsonA.J., Gene97, 207–212, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonntag, KC., Darai, G. Strategy for identifying the gene encoding the DNA polymerase of molluscum contagiosum virus type 1. Virus Genes 13, 31–44 (1996). https://doi.org/10.1007/BF00576976

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00576976

Key words

Navigation