Skip to main content
Log in

Effect of deletions 5′ to the translation initiation sequence on the expression of an mRNA in animal cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

To learn if an mRNA·18S rRNA interaction or a special secondary structure in the mRNA start region is essential for translation in eukaryotic cells, we constructed recombinant plasmids with the SV40 early promoter 5′ to part of the Escherichia coli tuf B-lacZ gene. Deletion of bases potentially complementary to the 18S rRNA highly increased the transient β-galactosidase expressed in transfected CHO cells. Deletion of bases that fostered formation of potential hairpins with the mRNA 5′-terminus or altered the structure of the coding region reduced β-galactosidase activity suggesting that these features of the mRNA secondary structure may be essential for initiation of translation. Computer aided analysis of the potential structure of 290 mRNAs suggests these are conserved features of the initiation region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KozakM (1983) Microbiol. Rev. 47: 1–45

    Google Scholar 

  2. GoldL (1988) Ann. Rev. Biochem. 57: 199–233

    Google Scholar 

  3. GoldL, PribnowD, SchneiderI, ShinedlingS, SingerBS & StormoG (1981) Ann. Rev. Microbiol. 35: 365–403

    Google Scholar 

  4. EderyI, PelletierJ & SonnenbergN (1987) In J.Ilan (ed), Translational Regulation of Gene Expression. Plenum, New York, pp. 335–366

    Google Scholar 

  5. PainVM (1986) Biochem. J. 235: 625–637

    Google Scholar 

  6. KozakM (1986) Cell 44: 283–292

    Google Scholar 

  7. KozakM (1987) Nucl. Acids. Res. 15: 8125–8132

    Google Scholar 

  8. LouisG. & GanozaMC (1988) Mol. Biol. Reports 13: 103–115

    Google Scholar 

  9. KozakM (1986) Proc. Natl. Acad. Sci. USA 83: 2851–2854

    Google Scholar 

  10. PelletierJ & SonnenbergN (1987) Biochem. Cell Biol. 65: 576–581

    Google Scholar 

  11. FuerstTR & MossB (1989) J. Mol. Biol. 206: 333–3248

    Google Scholar 

  12. KozakM (1990) Proc. Natl. Acad. Sci. USA 87: 8301–8305

    Google Scholar 

  13. GanozaMC, KofoidEC, MarliereP & LouisBG (1987) Nucl. Acids. Res. 15: 345–360

    Google Scholar 

  14. ShineJ & DalgarnoL (1975) Nature 254: 34–38

    Google Scholar 

  15. HagenbuchleO, SanterM & SteitzJA (1978) Cell 13: 551–563

    Google Scholar 

  16. BaralleFE & BrownleeGG (1978) Nature (London) 274: 84–87

    Google Scholar 

  17. BothGW (1979) FEBS Lett. 101: 220–224

    Google Scholar 

  18. MarounLE, DegnerM, PrecupJW & FranciskovichPO (1980) J. Theor. Biol. 120: 83–98

    Google Scholar 

  19. SalserW (1978) Cold Spring Harbor Symp. Quant. Biol. 42: 985–1002

    Google Scholar 

  20. SarganDR, GregorySP & ButterworthPHW (1982) J FEBS Lett. 47: 133–136

    Google Scholar 

  21. DeWachterR (1979) Nucl. Acids Res. 7: 2045–2054

    Google Scholar 

  22. CavenerDR & RaySC (1991) Nucleic Acids Res. 19: 3185–3192

    Google Scholar 

  23. AzadAA & DeaconNJ (1979) Biochem. Biophys. Res. Commun. 86: 568–576

    Google Scholar 

  24. NakashimaK, DarzynkiewiczE & ShatkinA (1980) Nature (London) 286: 226–231

    Google Scholar 

  25. SchroederHW, LaiarakosCD, GuptaRC, RanderathK & O'MalleyBW (1979) J. Biochem. 18: 5798–5808

    Google Scholar 

  26. YamaguchiK, HidakaS & MiuraKL (1982) Proc. Natl. Acad. Sci. USA 79: 1012–1016

    Google Scholar 

  27. AnG, HidakaK & SiminovitchS (1982) Mol. Cell. Biol. 2: 1628–1632

    Google Scholar 

  28. IsertantD & FiersW (1980) Gene 9: 1–12

    Google Scholar 

  29. LeeJS, AnG, FriesenJD & FillNP (1981) Cell 25: 251–258

    Google Scholar 

  30. Maniatis T, Fritsch EF & Sambrook J (1982) Cold Spring Harbor, New York

  31. MaxamAM & GilbertW (1980) Meth. Enzymol. 65: 499–560

    Google Scholar 

  32. StannersCP, ElicleriGC & GreenH (1971) Nature (London) New Biol. 230: 52–54

    Google Scholar 

  33. GrahamFL & van derEbAJ (1973) Virology 52: 456–467

    Google Scholar 

  34. WiglerM, PellicerA, SilversteinS, AxalR, UrlaubG & ChasinL (1979) Proc. Natl. Acad. Sci USA 76: 1373–1376

    Google Scholar 

  35. LaemmliUK (1970) Nature (London) 227: 680–685

    Google Scholar 

  36. TinocoI, BorerPN, DenglerB, LevineMD, UhlenbeckOC, CrothersDH & GrallaJ (1973) Nature New Biol. 246: 40–41

    Google Scholar 

  37. NinioJ (1979) Biochimie 61: 1133–1150

    Google Scholar 

  38. ZuckerM & SteiglerP (1981) Nucl. Acids Res. 9: 133–148

    Google Scholar 

  39. KozakM (1989) Mol. Cell. Biol. 9: 5134–5142

    Google Scholar 

  40. MunroD & JacobsonA (1989) In W.Hill et al. (eds), Ribosomes, Structure, Function and Evolution. The American Soc. Microbiol., Washington, D.C., pp. 299–305

    Google Scholar 

  41. LockardRE, CurreyK, BrownerM, LawrenceC & MaizelJ (1986) Nucl. Acids Res 14: 5827–5841

    Google Scholar 

  42. Louis BG & Ganoza MC, Manuscript in preparation

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganoza, M.C., Farrow, N.A. & An, G. Effect of deletions 5′ to the translation initiation sequence on the expression of an mRNA in animal cells. Mol Biol Rep 16, 277–284 (1992). https://doi.org/10.1007/BF00419668

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00419668

Key words

Navigation