Skip to main content
Log in

A transcription map of the pea chloroplast genome

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

A set of 53 cloned pea chloroplast DNA fragments representing approximately 90% of the chloroplast genome was used to probe Northern blots of total pea RNA, resulting in a nearly complete chloroplast transcription map. Similar analyses were performed for RNAs extracted from pea seedlings grown under several different light regimes. We have found that at least 85 kb of the 120 by pea chloroplast genome is represented as detectable transcripts. For many regions of the genome, we have detected multiple overlapping transcripts including both small, gene-sized RNAs and large transcripts covering entire gene clusters. All transcripts detected were more abundant (as a fraction of total cellular RNA) in light grown plants than in plants entirely in the dark. However, larger transcripts were generally more abundant in plants that had been exposed to only 24 h of white light (after germination in the dark) than in plants grown in continuous light. This study indicates that chloroplast genes are often grouped into multigene transcriptional units which can be cotranscribed, and that light-stimulated plastid development involves changes in the relative abundance of the overlapping RNAs of different length that result from transcription of these genes or gene clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allmen von J-M, Stutz E (1987) Nucleic Acid Res 15:2387

    Google Scholar 

  • Alt J, Herrmann RG (1984) Curr Genet 8:551–557

    Google Scholar 

  • Alt J, Morris J, Westhoff P, Herrmann RG (1984) Curr Genet 8:597–606

    Google Scholar 

  • Barkan A, Miles D, Taylor WC (1986) EMBO J 5:1421–1427

    Google Scholar 

  • Berends T, Kubiced Q, Mullet J (1986) Plant Mol Biol 6:125–134

    Google Scholar 

  • Bird CR, Koller B, Auffret AD, Huttly AK, Howe CJ, Dyer TA, Gray JC (1985) EMBO J 4:1381–1388

    Google Scholar 

  • Bookjans G, Stummann BM, Rasmussen OF, Henningsen KW (1986) Plant Mol Biol 6:359–366

    Google Scholar 

  • Boyer SK, Mullet JE (1986) Plant Mol Biol 6:229–243

    Google Scholar 

  • Christianson T, Rabinowitz M (1983) J Biol Chem 258:14025–14033

    Google Scholar 

  • Cozens AL, Walker JE (1986) Biochem J 236:453–460

    Google Scholar 

  • Cozens AL, Walker JE, Phillips AL, Huttly AK, Gray JC (1986) EMBO J 5:217–222

    Google Scholar 

  • Deng X-W, Gruissem W (1987) Cell 49:379–387

    Google Scholar 

  • Deno H, Sugiura M (1984) Proc Natl Acad Sci USA 81:405–408

    Google Scholar 

  • Erion JL (1985) Plant Mol Biol 4:169–179

    Google Scholar 

  • Fish LE, Kuck U, Bogorad L (1985) J Biol Chem 260:1413–1421

    Google Scholar 

  • Fromm H, Edelman M, Koller B, Goloubinoff P, Galun E (1986) Nucleic Acids Res 14:883–898

    Google Scholar 

  • Gorton HL, Briggs WR (1980) Plant Physiol 66:1024–1026

    Google Scholar 

  • Gruissem W, Zurawski G (1985) EMBO J 4:3375–3383

    Google Scholar 

  • Heinemeyer W, Alt J, Herrmann RG (1984) Curr Genet 8:543–549

    Google Scholar 

  • Herrmann RG, Alt J, Schiller B, Widger WR, Cramer WA (1984) FEBS Lett 176:239–244

    Google Scholar 

  • Herrmann RG, Westhoff P, Alt J, Tittgen J, Nelson N (1985) In: Vloten-Doting L, Groot GSP, Hall TC (eds) Molecular form and function of the plant genome. Plenum Press, New York, London, pp 233–256

    Google Scholar 

  • Howe CJ, Auffret AD, Doherty A, Bowman CM, Dyer TA, Gray JC (1982) Proc Natl Acad Sci USA 79:6903–6907

    Google Scholar 

  • Huttly AK, Gray JC (1984) Mol Gen Genet 194:402–409

    Google Scholar 

  • Jansen RK, Palmer JD (1987) Curr Genet 11:553–564

    Google Scholar 

  • Kaufman LS, Thompson WF, Briggs WR (1984) Science 226:1447–1449

    Google Scholar 

  • Koch W, Edwards K, Kossel H (1981) Cell 25:203–213

    Google Scholar 

  • Koller B, Delius H (1984) Cell 36:613–622

    Google Scholar 

  • Krebbers ET, Larrinua IM, McIntosh L, Bogorad L (1982) Nucleic Acids Res 10:4985–5002

    Google Scholar 

  • Lehmbeck J, Rasmussen OF, Bookjans GB, Jepsen BR, Stumann BM, Henningsen KW (1986) Plant Mol Biol 7:3–10

    Google Scholar 

  • Levens D, Ticho B, Ackerman E, Rabinowitz M (1980) J Biol Chem 256:5226–5232

    Google Scholar 

  • Link G (1984a) Plant Mol Biol 3:243–248

    Google Scholar 

  • Link G (1984b) EMBO J 3:1697–1704

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 382–388

    Google Scholar 

  • Morimoto R, Locker J, Synenki RM, Rabinowitz M (1979) J Biol Chem 254:12461–12370

    Google Scholar 

  • Morris J, Herrmann RG (1984a) Nucleic Acids Res 12:2837–2851

    Google Scholar 

  • Morris J, Herrmann RG (1984b) Nucleic Acids Res 12:6547–6558

    Google Scholar 

  • Mullet JE, Klein RR (1987) EMBO J 6:1517–1579

    Google Scholar 

  • Mullet JE, Orozco EM Jr, Chua NH (1985) Plant Mol Biol 4:39–54

    Google Scholar 

  • Neuhaus H, Link G (1987) Curr Genet 11:251–257

    Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Nature 322:572–574

    Google Scholar 

  • Oishi KK, Shapiro DR, Tewari KK (1984) Mol Cell Biol 4:2556–2563

    Google Scholar 

  • Palmer JD, Thompson WF (1981a) Gene 15:21–26

    Google Scholar 

  • Palmer JD, Thompson WF (1981b) Proc Natl Acad Sci USA 78:5533–5537

    Google Scholar 

  • Palmer JD, Jorgensen RA, Thompson WF (1985) Genetics 109:195–213

    Google Scholar 

  • Palmer JD, Osorio B, Thompson WF (1988) Curr Genet 14:65–74

    Google Scholar 

  • Phillips AL, Gray JC (1984) Mol Gen Genet 194:477–484

    Google Scholar 

  • Posno M, van Noort M, Debise R, Groot GSP (1984) Curr Genet 8:147–154

    Google Scholar 

  • Rasmussen OF, Bookjans G, Stummann BM, Henningsen KW (1984a) Plant Mol Biol 3:191–199

    Google Scholar 

  • Rasmussen OF, Stummann BM, Henningsen KW (1984b) Nucleic Acids Res 12:9143–9153

    Google Scholar 

  • Rodermel SR, Bogorad L (1985) J Cell Biol 100:463–476

    Google Scholar 

  • Shapiro DR, Tewari KK (1986) Plant Mol Biol 6:1–12

    Google Scholar 

  • Sijben-Muller G, Hallick RB, Alt J, Westhoff P, Herrmann RG (1986) Nucleic Acids Res 14:1029–1044

    Google Scholar 

  • Shinozaki K, Deno H, Kato A, Sugiura M (1983) Gene 24:147–155

    Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yanaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) EMBO J 5:2043–2049

    Google Scholar 

  • Smith SM, Ellis JR (1981) J Mol Appl Genet 1:127–137

    Google Scholar 

  • Smith AG, Gray JC (1984) Mol Gen Genet 194:471–476

    Google Scholar 

  • Stern DB, Gruissem W (1988) Cell (in press)

  • Tewari KK (1980) In: Davies JW, Hall T (eds) Nucleic acids in plants. CRC Press, Cleveland, pp 41–108

    Google Scholar 

  • Thompson WF, Everett M, Polans NO, Jorgensen RA, Palmer JD (1983) Planta 158:487–500

    Google Scholar 

  • Torazawa K, Hayashida N, Obokata J, Shinozaki K, Sugiura M (1986) Nucleic Acids Res 14:3143

    Google Scholar 

  • Westhoff P (1985) Mol Genet 201:115–123

    Google Scholar 

  • Westhoff P, Alt J, Herrmann RG (1983) EMBO J 2:2229–2237

    Google Scholar 

  • Westhoff P, Alt J, Widger WR, Cramer WA, Herrmann RG (1985a) Plant Mol Biol 4:103–110

    Google Scholar 

  • Westhoff P, Alt J, Nelson N, Herrmann RG (1985b) Mol Gen Genet 199:290–299

    Google Scholar 

  • Westhoff P, Farchaus JW, Herrmann RG (1986) Curr Genet 11:165–169

    Google Scholar 

  • Whitfeld PR, Bottomley W (1983) Annu Rev Plant Physiol 34:279–310

    Google Scholar 

  • Whitfeld P, Atchison BA, Bottomley W, Leaver CJ (1976) In: Bucher Th (ed) Genetics and biogenesis of chloroplasts and mitochondria. Elsevier/North Holland, Amsterdam, pp 361–368

    Google Scholar 

  • Willey DL, Auffret AD, Gray JC (1984) Cell 36:555–562

    Google Scholar 

  • Zhu YS, Kung SD, Bogorad L (1985) Plant Physiol 79:371–376

    Google Scholar 

  • Zurawski G, Bottomley W, Whitfeld PR (1982) Proc Natl Acad Sci USA 79:6260–6264

    Google Scholar 

  • Zurawski G, Bottomley W, Whitfeld PR (1984) Nucleic Acids Res 12:6547–6558

    Google Scholar 

  • Zurawski G, Bottomley W, Whitfeld PR (1986a) Nucleic Acids Res 14:3974

    Google Scholar 

  • Zurawski G, Whitfeld PR, Bottomley W (1986b) Nucleic Acids 14:3975

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woodbury, N.W., Roberts, L.L., Palmer, J.D. et al. A transcription map of the pea chloroplast genome. Curr Genet 14, 75–89 (1988). https://doi.org/10.1007/BF00405857

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00405857

Key words

Navigation