Skip to main content
Log in

Escherichia coli and other species of the enterobacteriaceae encode a protein similar to the family of Mip-like FK506-binding proteins

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A newly identified gene in Escherichia coli, fkpA, encodes a protein with extensive similarity to the macrophage infectivity potentiator (Mip) proteins of Legionella pneumophila and Chlamydia trachomatis. The FkpA protein may be a new member of the family of FK506-binding proteins (FKBPs) because its carboxyl domain includes a sequence that matches the consensus FK506-binding motif in 40 of 48 positions. including those amino acids at the active site that form hydrogen bonds with the drug FK506. The amino acid sequence of the 29kDa FkpA protein is 30–35% identical to the Mip proteins of L. pneumophila, L. micdadei, and C. trachomatis. Of the 270 amino acids of FkpA, 113 (42%) are identical to the sequence of one or another of these Mip proteins. Overexpression of FkpA or deletion of fkpA from the E. coli chromosome had no detrimental effect on bacterial growth, indicating that fkpA is not an essential gene. Hybridization of fkpA-specific DNA probes to genomic blots révealed that similar genes exist in several representatives of the Enterobacteriaceae. Thus, mip-like genes are not found exelusively in bacteria having a predominately intracellular life style, but instead appear to be a new FKBP subfamily that is a common constituent of many bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bangsborg JM, Cianciotto NP, Hindersson P (1991) Nucleotide sequence analysis of the Legionella micdadei mip gene, encoding a 30-kilodalton analog of the Legionella pneumophila Mip protein. Infect Immun 59:3836–3840

    PubMed  Google Scholar 

  • Cianciotto NP, Fields BS (1992) Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages. Proc Natl Acad Sci USA 89:5188–5191

    PubMed  Google Scholar 

  • Cianciotto NP, Eisenstein BI, Mody CH, Toews GB, Engleberg NC (1989) A Legionella pneumophila gene encoding a species-specific surface protein potentiates initiation of intracellular infection. Infect Immun 57:1255–1262

    PubMed  Google Scholar 

  • Cianciotto NP, Bangsborg JM, Eisenstein BI, Engleberg NC (1990a) Identification of mip-like genes in the genus Legionella. Infect Immun 58:2912–2918

    PubMed  Google Scholar 

  • Cianciotto NP, Eisenstein BI, Mody CH, Engleberg NC (1990b) A mutation in the mip gene results in an attenuation of Legionella pneumophila virulence. J Infect Dis 162:121–126

    PubMed  Google Scholar 

  • Clardy J (1993) Structural studies of complexed FK-506 binding protein. Ann N Y Acad Sci 685:37–45

    PubMed  Google Scholar 

  • Consevage MW, Porter RD, Phillips AT (1985) Cloning and expression in Escherichia coli of histidine utilization genes from Pseudomonas putida. J Bacteriol 162:138–146

    PubMed  Google Scholar 

  • Dreyfuss G, Adam SA, Choi YD (1984) Physical change in cytoplasmic messenger ribonucleoproteins in cells treated with inhibitors of mRNA transcription. Mol Cell Biol 4:415–423

    PubMed  Google Scholar 

  • Dumais-Pope C, O'Connell W, Cianciotto NP (1993) Distribution and regulation of the Legionella mip gene. In: Barbaree JM, Breiman RF, Dufour AP (eds) Legionella: current status and emerging perspectives. American Society for Microbiology, Washington, DC, pp 70–72

    Google Scholar 

  • Engleberg NC, Pearlman E, Dixon D, Eisenstein BI (1986) Antibodies isolated by using cloned surface antigens recognize antigenically related components of Legionella pneumophila and other Legionella species. J Immunol 136:1415–1417

    PubMed  Google Scholar 

  • Engleberg NC, Carter C, Weber DR, Cianciotto NP, Eisenstein BI (1989) DNA sequence of mip, a Legionella pneumophila gene associated with macrophage infectivity. Infect Immun 57:1263–1270

    PubMed  Google Scholar 

  • Feinberg AP, Vogelstein B (1984) Addendum: a technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 137:266–267

    PubMed  Google Scholar 

  • Fellay R, Frey J, Krisch H (1987) Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of gram-negative bacteria. Gene 52:147–154

    Article  PubMed  Google Scholar 

  • Finlay BB, Falkow S (1989) Common themes in microbial pathogenicity. Microbiol Rev 53:210–230

    PubMed  Google Scholar 

  • Fischer G, Bang H, Ludwig B, Mann K, Hacker J (1992) Mip protein of Legionella pneumophila exhibits peptidyl-prolyl-cis/trans isomerase (PPIase) activity. Mol Microbiol 6:1375–1383

    PubMed  Google Scholar 

  • Galat A (1993) Peptidylproline cis-trans-isomerases: immunophilins. Eur J Biochem 216:689–707

    PubMed  Google Scholar 

  • Hacker J, Fischer G (1993) Immunophilins: structure-function relationship and possible role in microbial pathogenicity. Mol Microbiol 10:445–456

    PubMed  Google Scholar 

  • Heitman J, Movva NR, Heistand PC, Hall MN (1991) FK506-binding protein proline rotamase is a target for the immunosuppressive agent FK506 in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 88:1948–1952

    PubMed  Google Scholar 

  • Henikoff S (1984) Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359

    Article  PubMed  Google Scholar 

  • Horne SM (1994) PhD Dissertation. University of North Dakota, Grand Forks

  • Kino T, Goto T (1993) Discovery of FK-506 and update. Ann N Y Acad Sci 685:13–21

    PubMed  Google Scholar 

  • Kohara Y, Akiyama K, Isono K (1987) The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell 50:495–508

    Article  PubMed  Google Scholar 

  • Kulakauskas S, Wikström PM, Berg DE (1991) Efficient introduction of cloned mutant alleles into the Escherichia coli chromosome. J Bacteriol 173:2633–2638

    PubMed  Google Scholar 

  • Lundemose AG, Rouch DA, Birkelund S, Christiansen G, Pearce JH (1992) Chlamydia trachomatis Mip-like protein. Mol Microbiol 6:2539–2548

    PubMed  Google Scholar 

  • Lundemose AG, Kay JE, Pearce JH (1993) Chlamydia trachomatis Mip-like protein has peptidyl-prolyl cis/trans isomerase activity that is inhibited by FK506 and rapamycin and is implicated in initiation of chlamydial infection. Mol Microbiol 7:777–783

    PubMed  Google Scholar 

  • Maratea D, Young KD, Young R (1985) Deletion and fusion analysis of the phage X174 lysis gene E. Gene 40:39–46

    Article  PubMed  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Parsons WH, Sigal NH, Wyvratt MJ (1993) FK-506-a novel immunosuppressant. Ann N Y Acad Sci 685:22–36

    PubMed  Google Scholar 

  • Roof WD, Horne SM, Young KD, Young R (1994) slyD, a host gene required for ϕX174 lysis, is related to the FKBP family of peptidyl-prolyl cis-trans isomerases. J Biol Chem 269:2902–2910

    PubMed  Google Scholar 

  • Rudd KE (1992) Alignment of E. coli DNA sequences to a revised, integrated genomic restriction map. In: Miller JH (ed) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, pp 2.3–2.43

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Larbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    PubMed  Google Scholar 

  • Schmid FX (1993) Prolyl isomerase: enzymatic catalysis of slow protein-folding reactions. Annu Rev Biophys Biomol Struct 22:123–143

    Article  PubMed  Google Scholar 

  • Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147:195–197

    CAS  PubMed  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    PubMed  Google Scholar 

  • Sturrock SS, Collins JF (1993) MPsrch version 1.3. Biocomputing Research Unit, University of Edinburgh, UK

    Google Scholar 

  • Trandinh CC, Pao GM, Saier MH Jr (1992) Structural and evolutionary relationships among the immunophilins: two ubiquitous families of peptidyl-prolyl cis-trans isomerases. FASEB J 6:3410–3420

    PubMed  Google Scholar 

  • Vieira J, Messing J (1987) Production of single-stranded plasmid DNA. Methods Enzymol 153:3–11

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Young.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horne, S.M., Young, K.D. Escherichia coli and other species of the enterobacteriaceae encode a protein similar to the family of Mip-like FK506-binding proteins. Arch. Microbiol. 163, 357–365 (1995). https://doi.org/10.1007/BF00404209

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00404209

Key words

Navigation