Skip to main content
Log in

Characterization of arsenopyrite oxidizing Thiobacillus. Tolerance to arsenite, arsenate, ferrous and ferric iron

  • Article
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Two strains of Thiobacillus, T. ferrooxidans and T. thiooxidans, have been isolated from a bacterial inoculum cultivated during a one-year period in a 1001 continuous laboratory pilot for treatment of an arsenopyrite/pyrite concentrate. The optimum pH for the growth of both strains has been found to be between 1.7 and 2.5. Because of the high metal toxicity in bioleach pulps, the tolerance of T. ferrooxidans and T. thiooxidans with respect to iron and arsenic has been studied. The growth of both strains is inhibited with 10 g/l of ferric ion, 5 g/l of arsenite and 40 g/l of arsenate. 20 g/l of ferrous iron is toxic to T. ferrooxidans but 30 g/l is necessary to impede the growth of T. thiooxidans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Braddock JF, Luong HV & Brown EJ (1984) Growth Kinetics of Thiobacillus ferroxidans isolated from arsenic mine drainage. Appl. Envion. Microbiol. 48: 48–55

    Google Scholar 

  • Charlot G (1966) Les méthodes de la chimie analytique, analyse quantitative minérale. 5th ed Masson et Cie (eds) Paris, France

  • Corbett CM & Ingledew W (1987) Is Fe3+/2+ cycling an intermediate in sulphur oxidation by Fe2+-grown Thiobacillus ferroxidans. FEMS Microbiol. Lett. 41: 1–6

    Google Scholar 

  • Johnson DB, Macvicar JH M & Rolfe S (1987) A new solid medium for the isolation and enumeration of Thiobacillus ferroxidans and acidophilic heterotrophic bacteria. J. Microbiol. Meth. 7: 9–18

    Google Scholar 

  • Karavaiko GI, Kuznetsov SI & Colonizik AI (1977) The bacterial leaching of metals from ores. English translation of ‘Izd Naud’ Moscow (1972) Technicopy Ltd Stonehouse Glos, England

    Google Scholar 

  • Kuenen JC & Tuovinen OH (1981) The genera Thiobacillus and Thiomiscropira. In: Starr MP, Stolp H, Trüper HG, Balows A & Schlegel HG (Eds) The Procaryote (pp 1004–1048) Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • Livesey-Goldblatt E, Norman Philippa & Livesey-Goldblatt DR (1983) Gold recovery from arsenopyrite/pyrite ore by bacterial leaching and cyanidation. In: Rossi G & Torma AE (Eds) Recent Progress in Biohydrometallurgy (pp 627–641) Associazione Mineraria Sarda, Italy

    Google Scholar 

  • Manning HL (1975) New medium for isolating iron-oxidising and heterotrophic acidophilic bacteria from acide mine drainage. Appl. Microbiol. 30: 1010–1016

    PubMed  Google Scholar 

  • Mishra AK & Roy P (1979) A note on the growth of Thiobacillus ferroxidans on solid medium. J. Appl. Bacteriol. 47: 289–292

    Google Scholar 

  • Morin D, Collinet MN, Ollivier P, El Kaliobi F & Livesey-Goldblatt E (1989) Etude de la lixiviation bactérienne de concentré sulfuré arsénié d'or réfractaire en pilote de laboratoire. Ind. Miné. Mines et Car. Techn. march-april 1989: 61–69

  • Mouraret M & Baldensperger J (1977) Use of membrane filters for the enumeration of autrophic Thiobacilli. Microbiol. Ecol. 3: 345–359

    Google Scholar 

  • Norris PR & Kelly DP (1978) Toxic metals in leaching systems. In: Murr LE, Torma AE & Brierley JA (Eds) Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena (pp 83–102) Academic Press, New York

    Google Scholar 

  • Panin VV, Karavaiko GI & Pol'kin SI (1985) Mechanisms and kinetics of bacterial oxidation of sulphide minerals. In: Karavaiko GI & Groudev SN (Eds) Biotechnology of Metals Proceedings of International Seminar and International Training Course Centre of International Projects (pp 197–215) GKNT Moscow, USSR

    Google Scholar 

  • Silverman MP & Lundgren DC (1959) Studies on the chemoautotrophic-iron bacterial F. ferroxidans: I. An improved medium and a harvesting procedure for securing high cell yields. J. Bacteriol. 77: 642–647

    PubMed  Google Scholar 

  • Sugio T, Katagiri T, Mokiyama M, Zhen YL, Inagaki K & Tano T (1988) Existence of a new type of sulfite oxydase which utilizes ferric ions as electron acceptor in Thiobacillus ferroxidans. Appl. Environ. Microbiol. 54: 153–157

    PubMed  Google Scholar 

  • Torma AE (1988) Use of biotechnology in mining and metallurgy. Biotech. Adv. 16: 1–83

    Google Scholar 

  • Tuovinen OH & Kelly DP (1974) Studies of the growth of Thiobacillus ferroxidans V: Factors affecting growth in liquid culture and development of colonies on solid media containing inorganic sulphur compounds. Arch. Microbiol. 98: 351–364

    PubMed  Google Scholar 

  • Tuovinen OH, Niemela SI & Gyllenberg HG (1971) Tolerance of Thiobacillus ferroxidans to some metals. Anton. Leeuwenhoek 37: 489–496

    Google Scholar 

  • Waksman SA & Joffe IS (1922) Microorganisms concerned with the oxidation of sulfur in soil II: Th. Thiooxidans a new sulfur oxidizing organism isolated from the soil. J. Bacteriol. 7: 239

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collinet, MN., Morin, D. Characterization of arsenopyrite oxidizing Thiobacillus. Tolerance to arsenite, arsenate, ferrous and ferric iron. Antonie van Leeuwenhoek 57, 237–244 (1990). https://doi.org/10.1007/BF00400155

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00400155

Key words

Navigation