Skip to main content
Log in

The sex determining region of Chironomus thummi is associated with highly repetitive DNA and transposable elements

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The dominant male sex determiner in chromosome III of the midge Chironomus thummi thummi is closely linked to a large cluster of tandem-repetitive DNA elements, the Cla elements, which are otherwise highly repetitive and distributed over more than 200 sites on all chromosomes. Chromosome III displays a hemizygous cluster of Cla elements in males but not in females. The chromosomal location of this hemizygous Cla element cluster is in the region of the male determiner M as localized by cytogenetic analysis. With Cla elements as hybridization probe, it was possible to clone a large part of the sex determining region. Molecular analysis of the DNA of males and females in this region displayed a number of differences between the two sexes. One striking difference is an unusual transposable element associated with the male sex determining region. The sex determining region also contains several other tandem-repetitive DNA elements in addition to the Cla elements. They are interspersed with single copy DNA. The accumulation of repetitive elements in the sex determining region is interpreted as the result of a lack of recombination between the male/female heteromorphic region, although recombination in the other sections of chromosome III occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beermann W (1955) Geschlechtsbestimmung und Evolution der genetischen Y-Chromosomen bei Chironomus. Biol Zentralbl 74:525–544

    Google Scholar 

  • Beermann W, Bauer H (1952) Der Chromosomenzyklus der Orthocladiinen (Nematocera, Diptera). Z Naturforsch 7b:557–563

    Google Scholar 

  • Bridges CB (1922) The origin of variations in sexual and sex limited characters, Am Nat 56:51–63

    Google Scholar 

  • Bull JJ (1983) Evolution of sex determining mechanisms. The Benjamin/Cummings Publishing Company, Menlo Park, Calif

    Google Scholar 

  • Charlesworth B (1991) The evolution of sex chromosomes. Science 251:1030–1033

    Google Scholar 

  • Chen EY, Seeburg PH (1985) Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4:165–170

    Google Scholar 

  • Darlington CD (1958) Evolution of genetic systems, 2nd ed. Basic Books, New York

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    Google Scholar 

  • Fischer J, Tichy H (1980) Über eine Heterochromatin-Mutation aus einer Wildpopulation von Chironomus nuditarsis. I. Zur Funktion des veränderten Genom-Abschnittes. Genetica 54:41–43

    Google Scholar 

  • Green MM (1980) Transposable elements in Drosophila and other diptera. Annu Rev Genet 14:109–120

    Google Scholar 

  • Hägele K (1985) Identification of a polytene chromosome band containing a male sex determiner of Chironomus thummi thummi. Chromosoma 91:167–171

    Google Scholar 

  • Hägele K (1986) Localization of a male sex determining chromosome region in Chironomus thummi piger. Genetica 70:187–190

    Google Scholar 

  • Hankeln T (1990) Molekulare Analyse phylogenetisch Bedeutsamer repetitiver DNA bei Chironomiden. Dissertation Ruhr-Universitaet Bochum, Germany

  • Hennig W (1990) The Y chromosome of Drosophila. In: Adolph KW (ed) Chromosomes: Eukaryotic, procaryotic, and viral, vol I, CRC Press, Boca Raton, Florida, USA, pp 213–238

    Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable minisatellite regions in human DNA. Nature 314:67–73

    Google Scholar 

  • John B (1988) The biology of heterochromatin. In: Verma (ed) Heterochromatin. Cambridge University Press, New York, pp 1–128

    Google Scholar 

  • Keyl H-G (1962) Chromosomenevolution bei Chironomus. II. Chromosomenumbauten und phylogenetische Beziehungen der Arten. Chromosoma 13:464–514

    Google Scholar 

  • Keyl H-G, Strenzke K (1956) Taxonomie und Cytologie von zwei Subspezies der Art Chironomus thummi. Z Naturforsch 11b:727–735

    Google Scholar 

  • Kirchhoff C (1988) GATA tandem repeats detect minisatellite regions in blowfly DNA (Diptera: Calliphoridae). Chromosoma 96:107–111

    Google Scholar 

  • Langer-Safer PR, Levine M, Ward DC (1982) Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci USA 79:4381–4385

    Google Scholar 

  • Mainx F (1964) The genetics of Megaselia scalaris Loew (Phoridae): A new type of sex determination in Diptera. Am Nat 98:415–430

    Google Scholar 

  • Mainx F (1966) Die Geschlechtsbestimmung von Megaselia scalaris Loew (Phoridae). Z Vererbungslehre 98:49–60

    Google Scholar 

  • Martin J, Lee BTO (1988) Sex determiners and speciation in the genus Chironomus. Pacific Sci 42:51–55

    Google Scholar 

  • Martin J, Kuvangkadilok C, Peart DH, Lee BTO (1980) Multiple sex determining regions in a group of related Chironomus species (Diptera, Chironomidae). Heredity 44:367–382

    Google Scholar 

  • Muller HJ (1932) Some genetic aspects of sex. Am Nat 66:118–138

    Google Scholar 

  • Nakamura Y, Leppert M, O'Connell P, Wolff R, Holm T, Culver M, Martin C, Fujimoto E, Hoff M, Kumlin E, White R (1987) Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235:1616–1622

    Google Scholar 

  • Nöthiger R, Steinmann-Zwicky M (1985) A single principle for sex determination in insects. Cold Spring Harbor Symp Quant Biol L: 615–621

  • Ohno S (1967) Sex chromosomes and sex-linked genes. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • Ribbert D (1967) Die Polytänchromosomen der Borstenbildungszellen von Calliphora erythrocephala. Chromosoma 21:296–344

    Google Scholar 

  • Rosin S, Fischer J (1972) Polymorphismus des Realisators für männliches Geschlecht bei Chironomus. Rev Suisse Zool 79:119–141

    Google Scholar 

  • Saiki RK, Gyllenstein UB, Erlich HA (1988) The polymerase chain reaction. In: Davie KE (ed) Genome analysis. A practical approach. IRL Press, Oxford

    Google Scholar 

  • Sambrook I, Fritsch EF, Maniatis T (1989) Molecular cloning, 2nd edition, Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schaefer J, Schmidt ER (1981) Different repetition frequencies of a 120 base-pair DNA element and its arrangement in Chironomus thummi thummi and Chironomus thummi piger. Chromosoma 84:61–66

    Google Scholar 

  • Schmidt ER (1981) The development of a 120 basepair repetitive DNA sequence in Chironomus thummi is correlated to the duplication of defined chromosomal segments. FEBS Lett 129:21–24

    Google Scholar 

  • Schmidt ER (1984) Clustered and interspersed repetitive DNA sequence family of Chironomus. The nucleotide sequence of the Cla-elements and of various flanking sequences J Mol Biol 178:1–15

    Google Scholar 

  • Schmidt ER (1992) Multicolor in-situ-hybridization — a useful technique for precise gene localisation. Sci Tech Inf X:80–84

    Google Scholar 

  • Schmidt ER, Vistorin G, Keyl H-G (1980) An AT-rich DNA component in the genomes of Chironomus thummi thummi and Chironomus thummi piger. Chromosoma 76:35–45

    Google Scholar 

  • Schmidt ER, Keyl H-G, Hankeln T (1988) In situ localization of two hemoglobin gene clusters in the chromosomes of 13 species of Chironomus. Chromosoma 96:353–359

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Google Scholar 

  • Steinemann M (1982) Multiple sex chromosomes in Drosophila miranda: a system to study the degeneration of a chromosome. Chromosoma 86:59–76

    Google Scholar 

  • Steinemann M, Steinemann S (1992) Degenerating Y chromosome of Drosophila miranda: A trap for retrotransposons. Proc Natl Acad Sci USA 89:7591–7595

    Google Scholar 

  • Traut W, Willhöft U (1990) A jumping sex determining factor in the fly Megaselia scalaris. Chromosoma 99:407–412

    Google Scholar 

  • Ulanovsky LE, Trifonov EN (1987) Estimation of wedge components in curved DNA. Nature 32:720–722

    Google Scholar 

  • Ullerich F-H (1963) Geschlechtschromosomen und Geschlechts-bestimmung bei einigen Calliphorinen (Calliphoridae, Diptera). Chromosoma 14:45–110

    Google Scholar 

  • Willhöft U, Traut W (1990) Molecular differentiation of the homomorphic sex chromosomes in Megaselia scalaris (Diptera) detected by random DNA probes. Chromosoma 99:237–242

    Google Scholar 

  • Winge O (1934) The experimental alteration of sex chromosomes into autosomes and vice versa, as illustrated by Lebistes. CR Lab Carlsberg Ser Phys 21:1–49

    Google Scholar 

  • Yanisch-Peron C, Vieira I, Messing I (1985) Improved M13 cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC 19 vectors. Gene 33:103–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by: W. Hennig

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraemer, C., Schmidt, E.R. The sex determining region of Chironomus thummi is associated with highly repetitive DNA and transposable elements. Chromosoma 102, 553–562 (1993). https://doi.org/10.1007/BF00368348

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00368348

Keywords

Navigation