Skip to main content
Log in

Tensile properties of the annulus fibrosus

II. Ultimate tensile strength and fatigue life

  • Original Articles
  • Published:
European Spine Journal Aims and scope Submit manuscript

Résumé

La première partie de cette étude a montré que les fibres de collagène ne doivent être en continuité pour renforcer l'anneau fibreux et que des échantillons d'annulus de 15 mm de largeur conservent environ 44% de leur rigidité in-situ et de leur résistance lorsqu'ils sont soumis à un étirement vertical. La seconde partie a exploré la limite de résistance à la tension (Ultimate Tensile Strength= UTS) et le comportement à la fatigue de tels échantillons. Des tranches verticales e disque de 5 mm d'épaisseur et de 30 mm de largeur ont été taillées à partir des bords latéraux de l'annulus et des corps vertébraux adjacents. Chaque tranche a été divisée sagittalement pour obtenir une paire d'échantillons identiques. Les extrémités osseuses de chaque tranche ont été fixées dans un appareil destiné à tester les matériaux de manière à ce que l'annulus puisse être étiré verticalement, comme cela se produit lors des mouvements de flexion du rachis dans la vie courante. L'un des deux échantillons de chaque paire a été étiré jusqu'à sa rupture pour déterminer sa limite de résistance à la tension (UTS); l'autre a été soumis à une charge cyclique égale à une fraction de l'UTS jusqu'à obtenir sa rupture. La rupture sous tension a commencé par l'arrachement du cartilage hyalin du plateau de l'os sous-jacent et s'est terminé par l'arrachement des fibres les plus périphériques de l'anneau hors de leur matrice. La résistance in-situ estimée dans le sens vertical était de 3,9 MPa pour la partie antérieure de l'annulus et de 8,6 MPa pour la partie postérieure de l'annulus. La rupture de fatigue pourrait survenir en moins de 10000 cycles si la force de tension venait à dépasser 45% de l'UTS. Ces résultats expliquent pourquoi les fissures radiaires manquent souvent de pénétrer la partie périphérique de l'anneau fibreux. Lorsqu'on les compare aux mesures, in vivo de la mise en charge rachidienne, nos résultats suggèrent que les mouvements répétés de flexion antérieure du rachis pourraient provoquer une rupture de fatigue de la partie postérieure de l'anneau fibreux.

Summary

Part I of this study showed that collagen fibres do need not need to be continuous to reinforce the annulus fibrosus, and that 15-mm-wide samples of annulus retain about 44% of their in situ stiffness and strength when stretched vertically. Part II investigated the ultimate tensile strength (UTS) and fatigue life of such samples. Vertical slices, 5 mm thick and 30 mm wide, were cut from the anterior and posterior margins of the annulus and adjacent vertebral bodies. Each slice was divided sagittally to obtain a matched pair of specimens. The bony ends of each specimen were secured in a materials testing machine so that the annulus could be stretched vertically, as occurs during bending movements of the spine in life. One of each pair of specimens was stretched to failure to obtain its UTS; the other was cyclically loaded at some fraction of the UTS until failure occurred. Tensile failure started with the hyaline cartilage end-plate being stripped off the underlying bone and ended with the most peripheral annular fibres pulling out of the matrix. The estimated in situ strength in the vertical direction was 3.9 MPa for the anterior annulus and 8.6 MPa for the posterior annulus. Fatigue failure could occur in less than 10000 cycles if the tensile force exceeded 45% of the UTS. The results explain why radial fissures often fail to penetrate the peripheral annulus. When compared with in vivo measurements of spinal loading, they suggest that repetitive forward bending movements could cause fatigue failure of the posterior annulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Adams MA, Dolan P (1991) A technique for quantifying the bending moment acting on the lumbar spine in-vivo. J Biomech 24:117–126

    Google Scholar 

  2. Adams MA, Green TP (1993) Tensile properties of the annulus fibrosus. I. The contribution of fibre-matrix interactions to tensile stiffness and strength. Eur Spine J 2:203–208

    Google Scholar 

  3. Adams MA, Hutton WC (1985) Gradual disc prolapse. Spine 10:524–531

    Google Scholar 

  4. Adams MA, Hutton WC, Stott JRR (1980) The resistance to flexion of the lumbar intervertebral joint. Spine 5:245–253

    Google Scholar 

  5. Adams MA, Dolan P, Hutton WC (1986) The stages of disc degeneration as revealed by discograms. J Bone Joint Surg [Br] 68:36–41

    Google Scholar 

  6. Adams MA, Dolan P, Hutton WC, Porter RW (1990) Diurnal changes in spinal mechanics and their clinical significance. J Bone Joint Surg [Br] 72:266–270

    Google Scholar 

  7. Adams MA, Green TP, Dolan P (1993) The strength in bending of lumbar intervertebral discs. Proceedings of the International Society for the Study of the Lumbar Spine, Marseilles, France, June 1993

  8. Ashby MF, Jones DRH (1986) Engineering materials 2. An introduction to microstructures, processing and design, chapter 25. Pergamon Press, Oxford

    Google Scholar 

  9. Bogduk N, Twomey LT (1991) Clinical anatomy of the lumbar spine. Churchill Livingstone, Melbourne, pp. 13–14

    Google Scholar 

  10. Brinckmann P, Biggemann M Hilweg D (1988) Fatigue fracture of human lumbar vertebrae. Clin Biomech [Suppl 1]

  11. Cassidy JJ, Hiltner A, Baer E (1989) hierarchical structure of the intervertebral disc. Connect Tissue Res 23:75–88

    Google Scholar 

  12. Dolan P, Adams MA (1993) The influence of lumbar and hip mobility on the bending stresses acting on the lumbar spine. Clin Biomech 8:185–192

    Google Scholar 

  13. Eyre DR (1988) Collagens of the disc. Ghosh P (ed) The biology of the intervertebral disc, vol I. CRC Press, Boca Raton, pp. 171–188

    Google Scholar 

  14. Galante JO (1967) Tensile properties of the human lumbar annulus fibrosus. Acta Orthop Scand [Suppl 100]

  15. Hansson TH, Keller T, Spengler D (1987) Mechanical behaviour of the human lumbar spine, II. Fatigue strength during dynamic compressive loading. J Orthop Res 5:479–487

    Google Scholar 

  16. Jayson MIV, Barks JS (1973) Structural changes in the intervertebral disc. Ann Rheum Dis 32:10–15

    Google Scholar 

  17. Marchand F, Ahmed AM (1989) Mechanical properties and failure mechanisms of the constituent components of the annulus fibrosus. Proceedings of the 10th Annual Conference of the Canadian Biomaterials Society, Montreal, Canada, June 1989

  18. Marchand F, Ahmed AM (1990) Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine 15:402–410

    Google Scholar 

  19. McNally DS, Adams MA (1992) Internal intervertebral disc mechanics as revealed by stress profilometry. Spine 17:66–73

    Google Scholar 

  20. Roberts S, Menage J, Urban JPG (1989) Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine 14:166–174

    Google Scholar 

  21. Swanson SAV, Freeman MAR, Day WH (1971) The fatigue properties of human cortical bone. Med Biol Eng 9:23–32

    Google Scholar 

  22. Tsuji H, Hirano N, Ohshima H, Ishihara H, Terahata N, Motoe T (1993) Structural variation of the anterior and posterior anulus fibrosus in the development of human lumbar intervertebral disc. Spine 18:204–210

    Google Scholar 

  23. Wu HC, Yao RF (1976) Mechanical behaviour of the human annulus fibrosus. J Biomech 9:1–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, T.P., Adams, M.A. & Dolan, P. Tensile properties of the annulus fibrosus. Eur Spine J 2, 209–214 (1993). https://doi.org/10.1007/BF00299448

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00299448

Mots-clés

Key words

Navigation