Skip to main content

Advertisement

Log in

Rescue of the fission yeast snRNA synthesis mutant snm1 by overexpression of the double-strand-specific Pac1 ribonuclease

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

The Schizosaccharomyces pombe temperature-sensitive mutant snm1 maintains reduced steady-state quantities of the spliceosomal small nuclear RNAs (snRNAs) and the RNA subunit of the tRNA processing enzyme RNase P. We report here the isolation of the pac1 + gene as a multi-copy suppressor of snm1. The pac1 + gene was previously identified as a suppressor of the ran1 mutant and by its ability to cause sterility when overexpressed. The pac1 + gene encodes a double-strand-specific ribonuclease that is similar to RNase III, an RNA processing and turnover enzyme in Escherichia coli. To investigate the essential structural features of the Pac1 RNase, we altered the pac1 + gene by deletion and point mutation and tested the mutant constructs for their ability to complement the snm1 and ran1 mutants and to cause sterility. These experiments identified four essential amino acids in the Pac1 sequence: glycine 178, glutamic acid 251, and valines 346 and 347. These amino acids are conserved in all RNase III-like proteins. The glycine and glutamic acid residues were previously identified as essential for E. coli RNase III activity. The valines are conserved in an element found in a family of double-stranded RNA binding proteins. Our results support the hypothesis that the Pac1 RNase is an RNase III homolog and suggest a role for the Pac1 RNase in snRNA metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfa C, Fantes P, Hyams J, McLeod M, Warbrick E (1993) Experiments with fission yeast, a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Altman S, Gold HA, Bartkiewicz M (1988) Ribonuclease P as a snRNP. In: Birnstiel ML (ed) Structure and function of major and minor small nuclear ribonucleoprotein particles. Springer-Verlag, Berlin, pp 183–195

    Google Scholar 

  • Ares M Jr, Igel AH (1990) Lethal and temperature-sensitive mutations and their suppressors identify an essential structural element in U2 small nuclear RNA. Genes Dev 4: 2132–2145

    Google Scholar 

  • Bass BL, Hurst SR, Singer JD (1994) Binding properties of newly identified Xenopus proteins containing dsRNA-binding motifs. Curr Biol 4: 301–314

    Google Scholar 

  • Bear M, Nilsen T, Costigan C, Altman S (1990) Structure and transcription of a human gene for H1 RNA, the RNA component of human RNase P. Nucleic Acids Res 18: 97–103

    Google Scholar 

  • Beese LS, Steitz TA (1991) Structural basis for the 3′–5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J 10: 25–33

    Google Scholar 

  • Belasco JG, Higgins CF (1988) Mechanisms of mRNA decay in bacteria: a perspective. Gene 72: 15–23

    Google Scholar 

  • Birney E, Kumar S, Krainer A (1993) Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res 21:5803–5816

    Google Scholar 

  • Birnstiel ML, Schaufele FJ (1988) Structure and function of minor snRNPs. In: Birnstiel ML (ed) Structure and function of major and minor small nuclear ribonucleoprotein particles. Springer-Verlag, Berlin, pp 155–182

    Google Scholar 

  • Burd CG, Dreyfuss G (1994) Conserved structures and diversity of functions of RNA-binding proteins. Science 265: 615–621

    Google Scholar 

  • Court D (1993) RNA processing and degradation by RNase III. In: Brawerman G, Belasco J (eds) Control of mRNA stability. Academic Press, New York, pp 70–116

    Google Scholar 

  • Dahlberg JE, Lund E (1988) The genes and transcription of the major small nuclear RNAs. In: Birnstiel ML (ed) Structure and function of major and minor small nuclear ribonucleoprotein particles. Springer-Verlag, Berlin, pp 38–70

    Google Scholar 

  • Egel R, Egel-Mitani M (1974) Premeiotic DNA synthesis in fission yeast. Exp Cell Res 88: 127–134

    Google Scholar 

  • Eliceiri GL (1981) Maturation of low molecular weight RNA species. In: Busch H (ed) The cell nucleus. Academic Press, New York, pp 307–330

    Google Scholar 

  • Fournier MJ, Maxwell ES (1993) The nucleolar snRNAs: catching up with the spliceosomal snRNAs. Trends Biochem Sci 18: 131–135

    Google Scholar 

  • Frendewey D, Barta I, Gillespie M, Potashkin J (1990) Schizosaccharomyces U6 genes have a sequence within their introns that matches the B box consensus of tRNA internal promoters. Nucleic Acids Res 18: 2025–2032

    Google Scholar 

  • Gatignol A, Buckler C, Jeang K-T (1993) Relatedness of an RNAbinding motif in human immunodeficiency virus type 1 TAR RNA-binding protein TRBP to human P1/dsI kinase and Drosophila Staufen. Mol Cell Biol 13: 2193–2202

    Google Scholar 

  • Gold HA, Topper JN, Clayton DA, Craft J (1989) The RNA processing enzyme RNase MRP is identical to the Th RNP and related to RNase P. Science 245: 1377–1380

    Google Scholar 

  • Gutz H, Heslot H, Leupold U, Loprieno N (1974) Schizosaccharomyces pombe. In: King RC (ed) Handbook of Genetics. Plenum Press, New York, pp 395–446

    Google Scholar 

  • Hottinger H, Pearson D, Yamao F, Gamulin V, Cooley L, Cooper T, Söll D (1982) Nonsense suppression in Schizosaccharomyces pombe: the S. pombe sup3-e tRNASer gene is active in S. cerevisiae. Mol Gen Genet 188: 219–224

    Google Scholar 

  • Iino Y, Yamamoto M (1985) Mutants of Schizosaccharomyces pombe which sporulate in the haploid state. Mol Gen Genet 198: 416–421

    Google Scholar 

  • Iino Y, Sugimoto A, Yamamoto M (1991) S. pombe pac1 +, whose overexpression inhibits sexual development, encodes a ribonuclease III-like RNase. EMBO J 10: 221–226

    Google Scholar 

  • Kenan DJ, Query CC, Keene JD (1991) RNA recognition: towards identifying determinants of specificity. Trends Biochem Sci 16: 214–220

    Google Scholar 

  • King CK, Sirdeshmukh R, Schlessinger D (1986) Nucleolytic processing of ribonucleic acid transcripts in prokaryotes. Microbiol Rev 50: 428–451

    Google Scholar 

  • Kishida M, Nagai T, Nakaseko Y, Shimoda C (1994) Meiosis-dependent mRNA splicing of fission yeast Schizosaccharomyces pombe mes1 + gene. Curr Genet 25: 497–503

    Google Scholar 

  • Kiss T, Marshallsay C, Filipowicz W (1991) Alteration of the RNA polymerase specificity of U3 snRNA genes during evolution and in vitro. Cell 65: 517–526

    Google Scholar 

  • Kohli J, Munz P, Söll D (1989) Informational suppression, transfer RNA, and intergenic conversion. In: Nasim A, Young P, Johnson BF (eds) Molecular biology of the fission yeast. Academic Press, San Diego, pp 75–96

    Google Scholar 

  • Koraimann G, Schroller C, Graus H, Angerer D, Teferle K, Högenauer G (1993) Expression of gene 19 of the conjugative plasmid R1 is controlled by RNase III. Mol Microbiol 9: 717–727

    Google Scholar 

  • Kunkel GR, Maser RL, Calvet JP, Pederson T (1986) U6 small nuclear RNA is transcribed by RNA polymerase III. Proc Natl Acad Sci USA 38: 8575–8579

    Google Scholar 

  • Leupold U (1950) Die vererbung von homothallie und heterothallie bei Schizosaccharomyces pombe. C R Trav Lab Carlsberg, Ser Physiol 24: 381–480

    Google Scholar 

  • Li H-L, Chelladurai BS, Zhang K, Nicholson AW (1993) Ribonuclease III cleavage of a bacteriophage T7 processing signal. Divalent cation specificity, and specific anion effects. Nucleic Acids Res 21: 1919–1925

    Google Scholar 

  • Lischwe MA, Ochs RL, Reddy R, Cook RG, Yeoman LC, Tan EM, Reichlin M, Busch H (1985) Purification and partial characterization of a nucleolar scleroderma antigen (Mr=34,000; Pi,8.5) rich in NG,NG-dimethylarginine. J Biol Chem 260: 14304–4310

    Google Scholar 

  • Lührmann R (1988) snRNP proteins. In: Birnstiel ML (eds) Structure and function of major and minor small nuclear ribonucleoprotein particles. Springer-Verlag, Berlin, pp 71–99

    Google Scholar 

  • Lund E, Dahlberg JE (1992) Cyclic 2′,3′-phosphates and nontemplated nucleotides at the 3′ end of spliceosomal U6 small nuclear RNAs. Science 255: 327–330

    Google Scholar 

  • Lygerou Z, Mitchell P, Petfalski E, Séraphin B, Tollervey D (1994) The POP1 gene encodes a protein component common to the RNase MRP and RNase P ribonucleoproteins. Genes Dev 8: 1423–1433

    Google Scholar 

  • Mayer JE, Schweiger M (1983) RNase III is positively regulated by T7 protein kinase. J Biol Chem 258: 5340–5343

    Google Scholar 

  • McKeown M (1993) The role of small nuclear RNAs in RNA splicing. Curr Opinion Cell Biol 5: 448–454

    Google Scholar 

  • McLeod M, Beach D (1988) A specific inhibitor of the ran1 + protein kinase regulates entry into meiosis in Schizosaccharomyces pombe. Nature 332: 509–514

    Google Scholar 

  • Mizukami T, Chang WI, Garkavtsev I, Kaplan N, Lombardi D, Matsumoto T, Niwa O, Kounosu A, Yanagida M, Marr TG, Beach D (1993) A 13 kb resolution cosmid map of the 14 Mb fission yeast genome by nonrandom sequence-tagged site mapping. Cell 73: 121–132

    Google Scholar 

  • Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194: 795–823

    Google Scholar 

  • Myslinski E, Ségault V, Branlant C (1990) An intron in the genes for U3 small nucleolar RNAs of the yeast Saccharomyces cerevisiae. Science 247: 1213–1216

    Google Scholar 

  • Nashimoto H, Uchida H (1985) DNA sequencing of the Escherichia coli ribonuclease III gene and its mutations. Mol Gen Genet 201: 25–29

    Google Scholar 

  • Nashimoto H, Miura A, Saito H, Uchida H (1985) Suppressors of temperature-sensitive mutations in a ribosomal protein gene, rpsL (S12), of Escherichia coli K12. Mol Gen Genet 199: 381–387

    Google Scholar 

  • Neiman AM, Stevenson BJ, Xu HP, Sprague GF Jr, Herskowitz I, Wigler M, Marcus S (1993) Functional homology of protein kinases required for sexual differentiation in Schizosaccharomyces pombe and Saccharomyces cerevisiae suggests a conserved signal transduction module in eukaryotic organisms. Mol Biol Cell 4: 107–120

    Google Scholar 

  • Nurse P (1985) Mutants of the fission yeast Schizosaccharomyces pombe which alter the shift between cell proliferation and sporulation. Mol Gen Genet 198: 497–502

    Google Scholar 

  • Parker KA, Steitz JA (1987) Structural analyses of the human U3 ribonucleoprotein particle reveal a conserved sequence available for base-pairing with pre-rRNA. Mol Cell Biol 7: 2899–2913

    Google Scholar 

  • Parry HD, Scherly D, Mattaj IW (1989) ‘Snurpogenesis’: the transcription and assembly of U snRNP components. Trends Biochem Sci 14: 15–19

    Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85: 2444–2448

    Google Scholar 

  • Potashkin J, Frendewey D (1989) Splicing of the U6 RNA precursor is impaired in fission yeast pre-mRNA splicing mutants. Nucleic Acids Res 17: 7821–7831

    Google Scholar 

  • Potashkin J, Frendewey D (1990) A mutation in a single gene of Schizosaccharomyces pombe affects the expression of several snRNAs and causes defects in RNA processing. EMBO J 9: 525–534

    Google Scholar 

  • Reddy R, Busch H (1988) Small nuclear RNAs: RNA sequences, structure, and modifications. In: Birnstiel ML (eds) Structure and function of major and minor small nuclear ribonucleoprotein particles. Springer-Verlag, Berlin, pp 1–37

    Google Scholar 

  • Reich C, Wise JA (1990) Evolutionary origin of the U6 small nuclear RNA intron. Mol Cell Biol 10: 5548–5552

    Google Scholar 

  • Robertson HD, Webster RE, Zinder ND (1968) Purification and properties of ribonuclease III from Escherichia coli. J Biol Chem 243: 82–91

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    Google Scholar 

  • Schmitt ME, Clayton DA (1993) Nuclear RNase MRP is required for correct processing of pre-5.8S rRNA in Saccharomyces cerevisiae. Mol Cell Biol 13: 7935–7941

    Google Scholar 

  • Shimoda C, Hirata A, Kishida M, Hashida T, Tanaka K (1985) Characterization of meiosis-deficient mutants by electron microscopy and mapping of four essential genes in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 200: 252–257

    Google Scholar 

  • Singh R, Reddy R (1989) γ-Monomethyl phosphate: a cap structure in spliceosomal U6 small nuclear RNA. Proc Natl Acad Sci USA 86: 8280–8283

    Google Scholar 

  • Sollner-Webb B (1993) Novel intron-encoded small nucleolar RNAs. Cell 75: 403–405

    Google Scholar 

  • St. Johnston D, Beuchle D, Nüsslein-Volhard C (1991) Staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell 66: 51–63

    Google Scholar 

  • St. Johnston D, Brown NH, Gall J, Jantsch M (1992) A conserved double-stranded RNA-binding domain. Proc Natl Acad Sci USA 89: 10979–10983

    Google Scholar 

  • Sulston J, Du Z, Thomas K, Wilson R, Hillier L, Staden R, Halloran N, Green P, Thierry-Mieg J, Qiu L, Dear S, Coulson A, Craxton M, Durbin R, Berks M, Metzstein M, Hawkins T, Ainscough R, Waterston R (1992) The C. elegans genome sequencing project: a beginning. Nature 356: 14–25

    Google Scholar 

  • Takahashi Y, Urushiyama S, Tani T, Ohshima Y (1993) An mRNA-type intron is present in the Rhodotorula hasegawae U2 small nuclear RNA gene. Mol Cell Biol 13: 5613–5619

    Google Scholar 

  • Tani T, Ohshima Y (1989) The gene for the U6 RNA in fission yeast has an intron. Nature 337: 87–90

    Google Scholar 

  • Tani T, Ohshima Y (1991) mRNA-type introns in U6 small nuclear RNA genes: implications for the catalysis in pre-mRNA splicing. Genes Dev 5: 1022–1031

    Google Scholar 

  • Topper JN, Clayton DA (1990) Characterization of human MRP/ Th RNA and its nuclear gene: full length MRP/Th RNA is an active endoribonuclease when assembled as an RNP. Nucleic Acids Res 18: 793–799

    Google Scholar 

  • Tranguch AJ, Engelke DR (1993) Comparative structural analysis of nuclear RNase P RNAs from yeast. J Biol Chem 268:14045–14055

    Google Scholar 

  • Vieira J, Messing J (1987) Production of single-stranded plasmid DNA. Methods Enzymol 153: 3–11

    Google Scholar 

  • Watanabe Y, Yamamoto M (1994) S. pombe mei2 + encodes an RNA-binding protein essential for premeiotic DNA synthesis and meiosis I, which cooperates with a novel RNA species meiRNA. Cell 78: 487–498

    Google Scholar 

  • Watanabe Y, Iino Y, Furuhata K, Shimoda C, Yamamoto M (1988) The S. pombe mei2 gene encoding a crucial molecule for commitment to meiosis is under the regulation of cAMP. EMBO J 7: 761–767

    Google Scholar 

  • Wright A, Maundrell K, Heyer W, Beach D, Nurse P (1986) Vectors for the construction of gene banks and the integration of cloned genes in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Plasmid 15: 156–158

    Google Scholar 

  • Xu H-P, Riggs M, Rodgers L, Wigler M (1990) A gene from S. pombe with homology to E. coli RNase III blocks conjugation and sporulation when overexpressed in wild-type cells. Nucleic Acids Res 18:5304

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. Y. Thomas

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotondo, G., Gillespie, M. & Frendewey, D. Rescue of the fission yeast snRNA synthesis mutant snm1 by overexpression of the double-strand-specific Pac1 ribonuclease. Molec. Gen. Genet. 247, 698–708 (1995). https://doi.org/10.1007/BF00290401

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00290401

Key words

Navigation