Skip to main content
Log in

Characterisation of actI-homologous DNA encoding polyketide synthase genes from the monensin producer Streptomyces cinnamonensis

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Cloned DNA encoding polyketide synthase (PKS) genes from one Streptomyces species was previously shown to serve as a useful hybridisation probe for the isolation of other PKS gene clusters from the same or different species. In this work, the actI and actIII genes, encoding components of the actinorhodin PKS of Streptomyces coelicolor, were used to identify and clone a region of homologous DNA from the monensin-producing organism S. cinnamonensis. A 4799 by fragment containing the S. cinnamonensis act-homologous DNA was sequenced. Five open reading frames (ORFs 1–5) were identified on one strand of this DNA. The five ORFs show high sequence similarities to ORFs that were previously identified in the granaticin, actinorhodin, tetracenomycin and whiE PKS gene clusters. This allowed the assignment of the following putative functions to these five ORFS : a heterodimeric β-ketoacyl synthase (ORF1 and ORF2), an acyl carrier protein (ORF3), a β-ketoacyl reductase (ORF5), and a bifunctional cyclase/dehydrase (ORF4). The ORFs are encoded in the order ORFl-ORF2-ORF3-ORF5-ORF4, and ORFs-1 and -2 show evidence for translational coupling. This act-homologous region therefore appears to encode a PKS gene cluster. A gene disruption experiment using the vector pGM 160, and other evidence, suggests that this cluster is not essential for monensin biosynthesis but rather is involved in the biosynthesis of a cryptic aromatic polyketide in S. cinnamonensis. An efficient plasmid transformation system for S. cinnamonensis has been established, using the multicopy plasmids pWOR120 and pWOR125.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashworth DM, Holmes DS, Robinson, JA, Okawa H, Cane DE (1989) Selection of specifically blocked mutants of Streptomyces cinnamonensis: Isolation and synthesis of 26-deoxymonensin A. J Antibiot 42:1088–1099

    Google Scholar 

  • Bailey CR, Bruton CJ, Butler MJ, Chater KF, Harris JE, Hopwood DA (1986) Properties of in vitro recombinant derivatives of pJVl, a multi-copy plasmid from Streptomyces phaeochromogenes. J Gen Microbiol 132:2071–78

    Google Scholar 

  • Baltz RH, Seno ET (1988) Genetics of Streptomyces fradiae and tylosin biosynthesis. Annu Rev Microbiol 42:547–574

    Google Scholar 

  • Bartel PL, Zhu C-B, Lampel JS, Dosch DC, Connors NC, Strohl WR, Beale JM, Floss HG (1990) Biosynthesis of anthraquinones by interspecies cloning of actinorhodin gene functions. J Bacteriol 172:4816–4826

    Google Scholar 

  • Beck J, Ripka S, Siegner A, Schiltz E, Schweizer E (1990) The multifunctional 6-methylsalicylic acid synthase gene of Penicillium patulum. Its gene structure relative to that of other polyketide synthase. Eur J Biochem 192:487–498

    Google Scholar 

  • Bibb MJ, Cohen SN (1982) Gene expression in Streptomyces: Construction and application of promoter-probe plasmid vectors in Streptomyces lividans. Mol Gen Genet 187:265–277

    Google Scholar 

  • Bibb MJ, Findlay PR, Johnson MW (1984) The relationship between base composition and codon usage in bacterial genes and its use in the simple and reliable identification of protein-coding sequences. Gene 30:157–166

    Google Scholar 

  • Bibb MJ, Bird S, Motamedi H, Collins JF, Hutchinson CR (1989) Analysis of the nucleotide sequence of the Streptomyces glaucescens tcmI genes provides key information about the enzymology of polyketide antibiotic biosynthesis. EMBO J 8:2727–2736

    Google Scholar 

  • Cane DE, Liang T-C, Hasler H (1982) Polyether biosynthesis. 2. Origin of the oxygen atoms of monensin A. J Am Chem Soc 104:7274–7281

    Google Scholar 

  • Cane DE, Celmer WD, Westley JW (1983) Unified stereochemical model of polyether antibiotic biosynthesis J Am Chem Soc 105:3594–3600

    Google Scholar 

  • Chi NY, Ehrlich SD, Lederberg T (1978) Functional expression of two Bacillus subtilis chromosomal genes in E. coli. J. Bacteriol 133:816–821

    Google Scholar 

  • Cortes J, Haydock SF, Roberts GA, Bevitt DJ, Leadlay PF (1990) An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Nature 348:176–178

    Google Scholar 

  • Covarrubias L, Bolivar F (1982) Construction and characterisation of new cloning vehicles VI. Plasmid pBR328, a new derivative of pBR328 lacking the 482-bp inverted duplication. Gene 17:79–89

    Google Scholar 

  • Davis NK, Chater KF (1990) Spore colour in Streptomyces coelicolor A3(2) involves the developmentally regulated synthesis of a compound biosynthetically related to polyketide antibiotics. Mol Microbiol 4:1679–1691

    Google Scholar 

  • Deininger PL (1983) Random subcloning of sonicated DNA: application to shotgun DNA sequence analysis. Anal Biochem 129:216–223

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    Google Scholar 

  • Donadio S, Staver MJ, McAlpine JB, Swanson SJ, Katz L (1991) Modular organisation of genes for complex polyketide biosynthesis. Science 252:675–679

    Google Scholar 

  • Donovan MJ, Borell CW, Wendt-Pienkowski E, Deli S, Richardson CR (1989) Polyether antibiotic biosynthesis: Biochemical and genetic aspects. In Hershberger CL, Queener SW, Hegeman G (eds) Genetics and molecular biology of industrial microorganisms. American Society of Microbiology, Washington, DC pp 85–92

    Google Scholar 

  • Epp JK, Huber MLB, Turner JR, Goodson T, Schoner BE (1989) Production of a hybrid macrolide antibiotic in Streptomyces ambofaciens and Streptomyces lividans by introduction of a cloned carbomycin biosynthetic gene from Streptomyces thermotolerans. Gene 85:293–301

    Google Scholar 

  • Fernandez-Moreno MA, Caballero JL, Hopwood DA, Malpartida F (1991) The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces. Cell 66:1–20

    Google Scholar 

  • Frischauf AM, Lehrach H, Poutska A, Murray N (1982) Lambda replacement vectors carrying polylinker sequences. J Mol Biol 170:827–842

    Google Scholar 

  • Hallam SE, Malpartida F, Hopwood DA (1988) Nucleotide sequence, transcription and deduced function of a gene involved in polyketide antibiotic synthesis in Streptomyces coelicolor. Gene 74:305–320

    Google Scholar 

  • Hershberger CL, Arnold B, Larson J, Skatrud P, Reynolds P, Szoke P, Rosteck PR, Swartling J, McGilvray D (1989) Role of giant linear plasmids in the biosynthesis of macrolide and polyketide antibiotics. In Hershberger CL, Queener SW, Hegeman G (eds) Genetics and molecular biology of industrial microorganisms. American Society of Microbiology, Washington, DC, pp 147–155

    Google Scholar 

  • Hopwood DA, Sherman DH (1990) Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet 24:37–66

    Google Scholar 

  • Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985) Genetic manipulation of Streptomyces: a laboratory manual. The John Innes Foundation, Norwich, UK

    Google Scholar 

  • Hopwood DA, Bibb MJ, Chater KF, Janssen GR, Malpartida F, Smith CP (1986) Regulation of gene expression in antibioticproducing Streptomyces. In Booth IR, Higgins CF (eds) Regulation of gene expression, 25 Years On. Symp Soc Gen Microbiol, Cambridge University Press, Cambridge, pp 251–276

    Google Scholar 

  • Ikeda H, Inoue M, Omura S (1983) Improvement of macrolide antibiotic producing streptomycete strains by the regeneration of protoplasts. J Antibiot 36:283–288

    Google Scholar 

  • Karn J, Brenner S, Barnett L, Cesareni G (1980) Novel bacteriophage λ cloning vector. Proc Natl Acad Sci USA 77: 5172–5176

    Google Scholar 

  • Katz E, Thompson CJ, Hopwood DA (1983) Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. J Gen Microbiol 129:2703–2714

    Google Scholar 

  • Kieser T (1984) Factors affecting the isolation of cccDNA from Streptomyces lividans and E. coli. Plasmid 12:19–36

    Google Scholar 

  • Kieser T, Melton RE (1988) Plasmid pIJ699, a multicopy positiveselection vector for Streptomyces. Gene 65:83–91

    Google Scholar 

  • Leskiw BK, Lawlor EJ, Fernandez-Abalos JM, Chater KF (1991) TTA codons in some genes prevent their expression in a class of developmental antibiotic-negative Streptomyces mutants. Proc Natl Acad Sci USA 88:2461–2465

    Google Scholar 

  • Lydiate DJ, Malpartida F, Hopwood DA (1985) The Streptomyces plasmid SCP2*: its functional analysis and development into useful cloning vectors. Gene 35:223–235

    Google Scholar 

  • Malpartida F, Hopwood DA (1986) Physical and genetic characterisation of the gene cluster for the antibiotic actinorhodin in Streptomyces coelicolor A3(2). Mol Gen Genet 205:66–73

    Google Scholar 

  • Malpartida F, Hallam SE, Kieser HM, Motamedi H, Hutchinson CR, Butler MJ, Sugden DA, Warren M, McKillop C, Bailey CR, Humphreys GO, Hopwood DA (1987) Homology between Streptomyces genes coding for synthesis of different polyketides used to clone antibiotic biosynthetic genes. Nature 325:818–820

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Möller W, Amons R (1985) Phosphate-binding sequences in nucleotide-binding proteins. FEBS Lett 186:1–7

    Google Scholar 

  • Muth G, Nußbaumer B, Wohlleben W, Pühler A (1989) A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes. Mol Gen Genet 219:341–348

    Google Scholar 

  • Normark S, Bergström S, Edhund T, Grundström T, Jaurin B, Hindberg FP, Olsson O (1983) Overlapping genes. Ann Rev Genet 17:499–525

    Google Scholar 

  • Norrander J, Kempe T, Messing J (1983) Construction of improved M13 vectors using oligonucleotide-directed mutagenesis. Gene 26:101–106

    Google Scholar 

  • Parro V, Hopwood DA, Mapartida F, Mellado RP (1991) Transcription of genes involved in the earliest steps of actinorhodin biosynthesis in Streptomyces coelicolor. Nucleic Acids Res 19:2623–2627

    Google Scholar 

  • Richardson MA, Kuhstoss S, Huber MLB, Ford L, Godfrey O, Turner JR, Rao RN (1990) Cloning of spiramycin biosynthetic genes and their use in constructing Streptomyces ambofaciens mutants defective in spiramycin biosynthesis. J Bacteriol 172:3790–3798

    Google Scholar 

  • Robinson JA (1991) Polyketide synthase complexes: their structure and function in antibiotic biosynthesis. Phil Trans R Soc [B] 332:1236–70

    Google Scholar 

  • Rodicio MR, Bruton CJ, Chater KF (1985) New derivatives of the Streptomyces temperate phage ϕC31 useful for the cloning and functional analysis of Streptomyces DNA. Gene 34:283–292

    Google Scholar 

  • Rudd BAM, Hopwood DA (1979) Genetics of actinorhodin biosynthesis by Streptomyces coelicolor A3(2). J Gen Microbiol 114:35–43

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Schulman MD, Gibbons P (1989) Cloning genes for avermectin biosynthesis in Streptomyces avermitilis. In Hershberger CL, Queener SW, Hegeman G (eds) Genetics and molecular biology of industrial microorganisms. American Society of Microbiology, Washington, DC, pp 44–52

    Google Scholar 

  • Scrutton NS, Berry A, Perham RN (1990) Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature 343:38–43

    Google Scholar 

  • Sherman DH, Malpartida F, Bibb MJ, Kieser HM, Bibb MJ, Hopwood DA (1989) Structure and deduced function of the granaticin-producing polyketide synthase gene cluster of Streptomyces violaceoruber Tü22. EMBO J 8:2717–2725

    Google Scholar 

  • Sherman DH, Bibb MJ, Simpson TJ, Johnson D, Malpartida F, Fernández-Moreno M, Martinez E, Hutchinson CR, Hopwood DA (1991) Molecular genetic analysis reveals a putative bifunctional polyketide cyclase/dehydrase gene from Streptomyces coelicolor and Streptomyces violaceoruber, and a cyclase/Omethyltransferase from Streptomyces glaucescens. Tetrahedron 47:6029–6043

    Google Scholar 

  • Streicher SL, Ruby CL, Paress PS, Sweasy JB, Danis SJ, MacNeil D, Gewain K, MacNeil T, Foor F, Morin N, Cimis G, Rubin R, Goldberg RG, Nallin M, Schulman MD, Gibbons F (1989) Cloning genes for avermectin biosynthesis in Streptomyces avermitilis. In: Hershberger CL, Queener SW, Hegeman G (eds) Genetics and molecular biology of industrial microorganisms. American Society of Microbiology, Washington, DC, pp 44–52

    Google Scholar 

  • Wakil SJ (1989) Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry 28:4523–4530

    Google Scholar 

  • Westley JW (1983) Polyether antibiotics, naturally occurring acid ionophores. Vol 1 Biology, vol 2 Chemistry. Marcel Dekker, New York and Basel

    Google Scholar 

  • Wood WB (1966) Host specificity of DNA produced by E. coli: Bacterial mutations affecting the restriction and modification of DNA. J Mol Biol 16:118–133

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Hennecke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arrowsmith, T.J., Malpartida, F., Sherman, D.H. et al. Characterisation of actI-homologous DNA encoding polyketide synthase genes from the monensin producer Streptomyces cinnamonensis . Molec. Gen. Genet. 234, 254–264 (1992). https://doi.org/10.1007/BF00283846

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00283846

Key words

Navigation