Skip to main content
Log in

Position of chromosomes in the human interphase nucleus

An analysis of nonhomologous chromatid translocations in lymphocyte cultures after Trenimon treatment and from patients with Fanconi's anemia and Bloom's syndrome

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

The problem of localization of chromosomes in relation to each other in the interphase nucleus of human lymphocytes was investigated by analysis of chromatid and chromosome aberrations observed in lymphocyte cultures of three patients with Fanconi's anemia, one patient with Bloom's syndrome, and in Trenimon-treated (Trenimon, Bayer) normal cells. Distribution of open gaps and breaks is highly correlated with chromosome length and distribution of breaks involved in chromatid translocations in Fanconi's anemia and in Trenimontreated cells. Both correlations are much lower in Bloom's syndrome. In Fanconi's anemia and in normal cells after Trenimon-treatment, the majority of chromatid translocations are between nonhomologous chromosomes, whereas in Bloom's syndrome mainly homologous chromosomes are involved. Statistical localization of chromosomes in relation to each other in the three-dimensional space by multidimensional scaling gives results consistent with the limited amount of independent evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakaki DT, Sparkes RS (1963) Microtechnique for culturing leukocytes from whole blood. C Genetics 2:57–60

    Google Scholar 

  • Avivi L, Feldman M (1980) Arrangement of chromosomes in the interphase nucleus of plants. Hum Genet 729:1–15

    Google Scholar 

  • Avivi L, Feldman M (1973) Mechanism of non-random chromosome placement in common wheat. Proc 4th Internat Wheat Genet Symposium (Missouri Agr Exp Sta Columbia, Mo), pp 627–633

  • Boveri T (1888) Die Betruchtung und Teilung des Eies von Ascaris Megalocephola. Zellenstudien H 2: pp 1–189. G Fischer, Jena

    Google Scholar 

  • Comings DE (1968) The rationale for an ordered arrangement of chromatin in the interphase nucleus. Am J Genet 20:131–143

    Google Scholar 

  • Comings D (1975) Implications of somatic recombinations and sister chromatid exchanges in Bloom's syndrome and cells located with mitomycin C. Humangenetik 28:191–196

    Google Scholar 

  • Comings DE (1980) Arrangement of nuclein in the nucleus. Hum Genet 53:131–143

    Google Scholar 

  • Cremer T, Cremer C, Schneider T, Baumann H, Hens L, Kirsch-Volders M (1982a) Analysis of chromosome positions in the interphase nucleus of Chinese hamster cells by laser-UV-irradiation experiments. Hum Genet (in press)

  • Cremer T, Cremer C, Baumann H, Luedtke EK, Sperling K, Teuber V, Zorn C (1982b) Rabl's model of the interphase chromosome arrangement tested in Chinese hamster cells by premature chromosome condensation and laser-UV-microbeam experiments. Hum Genet 60:46–56

    Google Scholar 

  • Dutrillaux B (1975) Sur la nature et l'origine des chromosome humains. Monographie des Annales de Génétique, l'expansion scientifique francaise, Paris

  • Gebhart E (1970) The treatment of human chromosomes in vitro: results. In: Vogel F, Röhrborn G (eds) Chemical mutagenesis in mammals and man. Springer, Berlin Heidelberg New York, pp 367–382

    Google Scholar 

  • Gebhart E, Bauer D (1970) Inter-und intrachromosomale Verteilung von Chromatidtranslokationen nach Einwirkung von Trenimon auf menschliche Leukozyten in vitro. Chromosoma (Berl) 32:152–161

    Google Scholar 

  • German J (1964) Cytological evidence for crossing-over in vitro in human lymphoid cells. Science 144:298–301

    Google Scholar 

  • Guttman L (1968) A general nonmetric technique for finding the smallest coordinate space for a configuration of points. Psychometrika 33:469–506

    Google Scholar 

  • Hampel KE (1968) Über die Wirkung von Zytostatica auf die Chromosomen des Menschen. Intern J Clin Pharmacol 1:322–371

    Google Scholar 

  • Hens L, Kirsch-volders M, Verschaeve L, Susanne C (1982) The central localization of the small and early replicating chromosomes in human diploid metaphase figures. Hum Genet 60:249–256

    Google Scholar 

  • Jancey RC (1975) A new source of evidence for the polarized nucleus in maize. Can J Genet Cytol 17:245–252

    Google Scholar 

  • Johnson RM (1973) Pairwise nonmetric multidimensional scaling. Psychometrika 38:11–19

    Google Scholar 

  • Kirsch-Volders M, Hens L, Susanne C, Galperin-Lemaitre H (1977) Stability of centromere center distances in normal human metaphases. Cytogenet Cell Genet 18:61–74

    Google Scholar 

  • Kirsch-Volders M, Hens L, Susanne C (1980) Telomere and centromere association tendencies in the human male metaphase complement. Hum Genet 54:69–77

    Google Scholar 

  • Kirsch-Volders M, Hens L, Van den Berghe H, Scholberg B, Susanne C (1982) Chromosome distribution studies in XXY karyotypes. J Med Genet 19:57–62

    Google Scholar 

  • Kruskal JB (1964a) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29:1–27

    Google Scholar 

  • Kruskal JB (1964b) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115–129

    Google Scholar 

  • Kuhn EM (1976) Localization by Q-banding of mitotic chiasmata in cases of Bloom's syndrome. Chromosoma 57:1–11

    Google Scholar 

  • Kuhn EM (1978) Mitotic chiasmata and other quadriradials in mitomycin C-treated Bloom's syndrome lymphocytes. Chromosoma 66:287–297

    Google Scholar 

  • Kuhn EM, Therman E (1979) Chromosome breakage and rejoining of sister chromatids in Bloom's syndrome. Chromosoma 73:275–286

    Google Scholar 

  • Möbus C (1974) Ein Beitrag zur metrischen und nonmetrischen Analyse von nichtsymmetrischen Proximitätsmatritzen mit multidimensionalen Skalierungsmodellen. Inaug Diss, WISO-Fakultät Uni Heidelberg

  • Möbus C (1976) Nonmetric multidimensional scaling without disparaties and derivatives: a rank-correlation-oriented approach through L1-approximation. Archiv Psychol 128:240–266

    Google Scholar 

  • Muller HJ (1941) Induced mutations in drosophila. In: Genes and chromosomes, structure and organization: Cold Spring Harbor Symposia on Quantitative Biology, The Biological Laboratory, Cold Spring Harbor, LI, New York, Vol IX:151–167

  • Obe G (1969a) Die Kombinationshäufigkeiten menschlicher Leukozytenchromosomen in chemisch induzierten Translokationen. Chromosoma 27:321–326

    Google Scholar 

  • Obe G (1969b) Die Verteilung chemisch induzierter achromatischer Läsionen und Brüche auf den Chromatiden menschlicher Leukozytenchromosomen. Chromosoma 26:475–479

    Google Scholar 

  • Paris Conference (1971) Standardization in human cytogenetics. The National Foundation, vol VIII, no. 7

  • ISCN (1978) An international system for human cytogenetic nomenclature. Cytogenet Cell Genet 21:309–404

    Google Scholar 

  • Rabl C (1885) Über Zellteilung. In: Gegenbaur C (ed) Morphologisches Jahrbuch 10:214–330

  • Schaap T, Sagi M, Cohen MM (1980) Chromosome-specific patterns of mitomycin C-induced rearrangements in human lymphocytes. Cytogenet Cell Genet 28:240–250

    Google Scholar 

  • Schroeder TM, Kurth R (1971) Analytical review: spontaneous chromosomal breakage and high incidence of leukemia in inherited disease. Blood 37:No. 1 (Jan)

  • Schroeder TM, German J (1974) Bloom's syndrome and Fanconi's anemia: demonstration of two distinctive patterns of chromosome disruption and rearrangement. Humangenetik 25:299–306

    Google Scholar 

  • Schroeder TM (1975) Sister chromatid exchanges and chromatid interchanges in Bloom's syndrome. Humangenetik 30:317–323

    Google Scholar 

  • Shaw MW, Cohen MM (1965) Chromosome exchanges in human lymphocytes induced by mitomycin C. Genetics 51:181–190

    Google Scholar 

  • Shiraishy Y, Sandberg AA (1977) The relationship between sister chromatid exchanges and chromosome aberrations in Bloom's syndrome. Cytogenet Cell Genet 18:13–23

    Google Scholar 

  • Sperling K, Lüdtke EK (1981) Arrangement of prematurely condensed chromosomes in cultured cells and lymphocytes of the Indian muntjac. Chromosoma 83:541–553

    Google Scholar 

  • Therman E, Kuhn EM (1976) Cytological demonstration of mitotic crossing over in man. Cytogenet Cell Genet 17:254–267

    Google Scholar 

  • Therman E (1980) Human chromosomes: structure, behavior, effects. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Therman E, Kuhn EM (1981) Mitotic crossing over and segregation in man. Hum Genet 59:93–100

    Google Scholar 

  • Vogel F, Schroeder TM (1974) The internal order of the interphase nucleus. Hum Genet 25;265–297

    Google Scholar 

  • Wang HG, Fedoroff S (1972) Banding in human chromosomes treated with trypsin. Nature (New Biol) 235:52–53

    Google Scholar 

  • Zorn C, Cremer C, Cremer T, Zimmer J (1979) Unscheduled DNA synthesis after partial UV radiation of the cell nucleus, distribution in interphase and metaphase. Exp Cell Res 124:111–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hager, H.D., Schroeder-Kurth, T.M. & Vogel, F. Position of chromosomes in the human interphase nucleus. Hum Genet 61, 342–356 (1982). https://doi.org/10.1007/BF00276599

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276599

Keywords

Navigation