Skip to main content
Log in

A chloride channel reconstituted from fetal rat brain growth cones

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Chloride channels were reconstituted into planar lipid bilayers isolated from a preparation of growth cone particles (GCPs) isolated from fetal rat brain. One type of channel was predominantly seen and some of its biophysical and pharmacological properties were studied. The single channel i-V relationship was curvilinear with a chord conductance of 75 pS at +30 mV in symmetric 200 mm NaCl solutions buffered with phosphate. The channel was inactivated by depolarization, and this inactivation was reversed rapidly upon returning to −25 mV. The Cl channel was significantly permeant to Na+ ions (P Na/P Cl=0.26), and the relative halide permeabilities were determined to be: I(1.92)>Br(1.73)>Cl(1.0)>F(0.34). The channel was inhibited by the common stilbene compounds (DIDS, SITS, DNDS), as well as by Zn2+ ions and an indanyloxyacetic acid derivative. A developmental role for the GCP Cl channel is suggested by the observation that adult rat brain synaptosomal membranes were nearly devoid of this type of Cl channel.

The authors thank Dr. Donald Landry, Columbia University, for the generous gift of 94-IAA, and Prof. Dale Benos, University of Albama, for helpful suggestions on chloride channel pharmacology made during the experiments. Drs. Stephen Raymond and G.K. Wang of the Anesthesia Research Laboratories of The Brigham and Women's Hospital are acknowledged for providing us with an amplifier and laser printer necessary for the construction of many of the figures. Ms. Ellen Jacobsen helped with the manuscript typing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bader, C.R., Bertrand, D., Schlichter, R. 1987. Ca++-activated chloride current in cultured sensory and parasympathetic quail neurones. J. Physiol. 394:125–148

    Google Scholar 

  • Barasch, J., Gershon, M.D. Nunez, E.A., Tamir, H., Al-Awqati, Q. 1988. Thyrotropin induces the acidification of the secretory granules of parafollicular cells by increasing chloride conductance. J. Cell Biol. 107:2137–2147

    Google Scholar 

  • Barres, B.A., Chun, L.L.Y., Corey, D.P. 1988. Ion channel expression by white matter glia. Glia 1:10–30

    Google Scholar 

  • Bear, C.E. 1988. Phosphorylation-activated chloride channels in human skin fibroblasts. FEBS Lett. 237:145–149

    Google Scholar 

  • Blatz, A.L., Magleby, K.L. 1983. Single voltage-dependent chlorideselective channels of large conductance in cultured rat muscle. Biophys. J. 43:237–241

    Google Scholar 

  • Blatz, A.L., Magleby, K.L. 1985. Single chloride-selective channels active at resting membrane potentials in cultured rat skeletal muscle. Biophys. J. 47:119–123

    Google Scholar 

  • Bridges, R.J., Worrell, R.T., Frizzell, R.A., Benos, D.J. 1987. Stilbene disulfonate blockade of colonic secretory Cl channels in planar lipid bilayers. Am. J. Physiology 256:C902–912

    Google Scholar 

  • Cliff, W.H., Frizzell, R.A. 1990. Separate Cl conductances activated by cAMP and Ca2+ in Cl-secreting epithelial cells. Proc. Natl. Acad. Sci USA 87:4956–4960

    Google Scholar 

  • Cohan, C.S., Kater, S.B. 1986. Suppression of neurite elongation and growth cone motility by electrical activity. Science 232:1638–1640.

    Google Scholar 

  • Cohen, R.S., Blomberg, F., Berzins, K., Siekevitz, P. 1977. The structure of postsynaptic densities isolated from dog cerebral cortex. J. Cell Biol. 74:181–203

    Google Scholar 

  • DeBin, J.A., Maggio, J.E., Strichartz, G.R. 1993. Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion Leiurus quinquestriatus. Am. J. Physiol. 264:C361–369

    Google Scholar 

  • DeBin, J.A., Strichartz, G.R. 1990. Anion channels from mammalian nerve growth cones. Biophys. J. 57:319a (Abstr.)

  • DeBin, J.A., Strichartz, G.R. 1991. Chloride channel inhibition by the venom of the scorpion Leiurus quinquestriatus. Toxicon 29:1403–1408

    Google Scholar 

  • Diener, M., Rummel, W., Mestres, P., Lindemann, B. 1989. Single chloride channels in colon mucosa and isolated colonic enterocytes of the rat. J. Membrane Biol. 108:21–30

    Google Scholar 

  • Dudel, J., Franke, C., Hatt, H., Usherwood, P.N.R. 1989. Chloride channels gated by extrajunctional glutamate receptors (H-receptors) on locust leg muscle. Brain Res. 481:215–220

    Google Scholar 

  • Franciolini, F., Nonner, W. 1987. Anion and cation permeability of a chloride channel in rat hippocampal neurons. J. Gen. Physiol. 90:453–478

    Google Scholar 

  • Franciolini, F., Petris, A. 1990. Chloride channels of biological membranes. Biochim. Biophys. Acta 103:247–259

    Google Scholar 

  • Franke, C., Hatt, H., Dudel, J. 1986. The inhibitory chloride channel activated by glutamate as well as gamma-amino-butyric acid (GABA). J. Comp. Physiol. A. 159:591–660

    Google Scholar 

  • Frizzell, R.A. 1988. The role of absorptive and secretory processes in the airway surface. Am. Rev. Respir. Dis. 139:S3-S6

    Google Scholar 

  • Gray, P.T.A., Bevan, S., Ritchie, J.M. 1984. High conductance anionselective channels in rat cultured Schwann cells. Proc. Roy. Soc. Lond. B221:395–409

    Google Scholar 

  • Gögelein, H. 1988. Chloride channels in epithelia. Biochim. Biophys. Acta 947:109–156

    Google Scholar 

  • Hanrahan, J.W., Tabcharani, J.A. 1990. Inhibition of an outwardly rectifying anion channel by HEPES and related buffers. J. Membrane Biol. 116:65–77.

    CAS  Google Scholar 

  • Hayslett, J.P., Gögelein, H., Kunzelmann, K., Greger, R. 1987. Characteristics of apical chloride channels in human colon cells (HT29), Pfluegers Arch. 410:487–494

    Google Scholar 

  • Hille, B. 1992. Ion Channels of Excitable Membranes. 2nd Ed. Sinauer, Sunderland, MA

    Google Scholar 

  • Kolb, H.A., Brown, C.D.A., Murer, H. 1985. Identification of a voltage-dependent anion channel in the apical membrane of a Cl-secretory epithelium (MDCK). Pfluegers Arch. 403:262–265

    Google Scholar 

  • Krnjevic, K. 1974. Chemical nature of synaptic transmission in vertebrates. Annu. Rev. Physiol. 54:418–505

    Google Scholar 

  • Landry, D.W., Akabas, M.H., Redhead, C., Edelman, A., Cragoe, E.J., Jr., Al-Awqati, Q. 1989. Purification and reconstitution of chloride channels from kidney and trachea. Science 244:1469–1472

    Google Scholar 

  • Lemos, J.R., Ocorr, K.A., Nordman, J.J. 1989. Possible role for ionic channels in neurosecretory granules of the rat neurohypophysis. In: Secretion and its Control. G.S. Oxford, editor. pp. 333–348. Rockefeller University, NY

    Google Scholar 

  • Lewis, C.A. 1979. Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction, J. Physiol. 286:417–445

    Google Scholar 

  • Lockerbie, R.O., Miller, V.E., Pfenninger, K.H. 1991. Regulated plasmalemmal expansion in nerve growth cones. J. Cell. Biol. 112: 1215–1227

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275

    CAS  PubMed  Google Scholar 

  • Lukacs, G.L., Moczydlowski, E. 1990. A chloride channel from lobster walking leg nerves: Characterization of single-channel properties in planar bilayers. J. Gen. Physiol. 96:707–733

    Google Scholar 

  • Nomura, K., Sokabe, M. 1991. Anion channels from rat brain synaptosomal membranes incorporated into planar bilayers. J. Membrane Biol. 124:53–62

    Google Scholar 

  • Owen, D.G., Segal, M., Barker, J.L. 1984. A Ca++-dependent Cl conductance in cultured mouse spinal neurons. Nature 311:567–570

    Google Scholar 

  • Pfenninger, K.H., de la Houssaye, B.A., Frame, L., Helmke, S., Lockerbie, R.O., Lohse, K., Miller, V., Negre-Aminou, P., Wood, M.R. 1991. Biochemical dissection of plasmalemmal expansion at the growth cone. In: The Nerve Growth Cone. P.C. Letourneau, S.B. Kater, and E.R. Macagno, editors. pp. 111–123. Raven, NY

    Google Scholar 

  • Pfenninger, K.H., Ellis, L., Johnson, M.P., Friedman, L.B., Somlo, S. 1983. Nerve growth cones isolated from fetal rat brain: subcellular fractionation and characterization. Cell 35:573–584

    Google Scholar 

  • Reinhardt, A., Bridges, R.J., Rummel, W., Lindermann, B. 1987. Properties of an anion-selective channel from rat colonic enterocyte plasma membranes reconstituted into planar phospholipid bilayers. J. Membrane Biol. 95:47–54

    Google Scholar 

  • Robinson, R.A., Stokes, R.H. 1959. Electrolyte Solutions. 2nd ed. Butterworth's, London

    Google Scholar 

  • Sattelle, D.B. 1992. Receptors for l-glutamate and GABA in the nervous system of an insect. Comp. Biochem. Physiol. C. 103:429–438

    Google Scholar 

  • Schein, S.J., Colombini, M.J., Finkelstein, A. 1976. Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from Paramecium mitochondria. J. Membrane Biol. 30:99–120

    Google Scholar 

  • Schmid, A., Gögelein, H., Kemmer, T.P., Schulz, I. 1988. Anion channels in giant liposomes made of endoplasmic reticulum vesicles from rat exocrine pancreas. J. Membrane Biol. 104:275–282

    Google Scholar 

  • Segal, M., Barker, J.L., Owen, D.G. 1987. Chloride conductances in central neurons. Israel J. Med. Sci. 23:95–100

    Google Scholar 

  • Sonnhof, U. 1987. Single voltage-dependent K+ and Cl channels in cultured rat astrocytes. Can. J. Physiology 65:1043–1050

    Google Scholar 

  • Sorgato, M.C., Keller, B.U., Stühmer, W. 1987. Patch-clamping of the inner mitochondrial membrane reveals a voltage-dependent ion channel. Nature 330:498–500

    Google Scholar 

  • Stanley, E.F., Ehrenstein, G., Russell, J.T. 1988. Evidence for anion channels in secretory vesicles. Neuroscience 25:1035–1039

    Google Scholar 

  • Takeuchi, A., Takeuchi, N. 1964. Iontophoretic application of gamma aminobutyric acid on crayfish muscle. Nature 203:494–497

    Google Scholar 

  • Takeuchi, A., Takeuchi, N. 1966. On the permeability of the presynaptic terminal of the crayfish neuromuscular junction during synaptic inhibition, J. Physiol. 183:433–449

    Google Scholar 

  • Welsh, M.J., Anderson, M.P., Rich, D.P., Berger, H.A., Denning, G.M., Ostedgaard, L.S., Sheppard, D.N., Cheng, S.H., Gregory, R.J., Smith, A.E. 1992. Cystic fibrosis transmembrane conductance regulation: a chloride channel with novel regulation. Neuron 8:821–829.

    Google Scholar 

  • Woll, K.H., Leibowitz, M.D., Neumcke, B., Hille, B. 1987. A high conductance anion channel in adult amphibian skeletal muscle. Pfluegers Arch. 410:632–640

    Google Scholar 

  • Wood, M.R., DeBin, J.A., Strichartz, G.R., Pfenninger, K.H. 1992. Plasmalemmal insertion and modification of sodium channels at the nerve growth cone. J. Neurosci. 12:2948–2959

    Google Scholar 

  • Wright, E.M., Diamond, J.M. 1977. Anion selectivity in biological systems. Physiol. Rev. 57:109–156

    Google Scholar 

  • Wunder, U.R., Colombini, M. 1991. Patch clamping VDAC in liposomes containing whole mitochondrial membranes. J. Membrane Biol. 123:83–91

    Google Scholar 

  • Yamamoto, D., Suzuki, N. 1987. Blockage of chloride channels by HEPES buffer. Proc. Roy. Soc. Lond. B230:93–100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was financially supported by Public Health Service Grants GM15904 (to G.R.S.) and NS24676 (to K.H.P.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeBin, J.A., Wood, M.R., Pfenninger, K.H. et al. A chloride channel reconstituted from fetal rat brain growth cones. J. Membarin Biol. 141, 7–19 (1994). https://doi.org/10.1007/BF00232869

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232869

Key words

Navigation