Skip to main content
Log in

X-ray powder diffraction study of CaTiO3 perovskite at high temperatures

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

CaTiO3 perovskite has been studied at high temperature and P = 1 bar by powder x-ray diffraction and its structure refined subsequently by the Rietveld method. This Pbnm perovskite shows a decrease of orthorhombic distortion with increasing temperature as manifested by the increasing of the inter-octahedral angles towards 180°. Linear thermal expansion is observed for CaTiO3 to 1373 K; extrapolation of these data suggest a possible transition to a tetragonal or pseudo-tetragonal phase near 1600 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahams SC (1971) Ferroelasticity. Mat Res Bull 6:881–890

    Google Scholar 

  • Fiquet GH, Reichmann J, Boehler R (1992) High-pressure X-ray diffraction study of CaTiO3 perovskite, EOS, Am. Geophys. Union, 73, Spring Meeting Suppl., 300

  • Glazer AM (1972) The classification of tilted octahedra in perovskites. Acta Crystallogr B28:3384–3392

    Google Scholar 

  • Guyot F et al. (1993) High T specific heat of CaTiO3. Phys Chem Minerals (in press)

  • Hill RJ, Jackson I (1990) The thermal expansion of ScAlO3 — a silicate perovskite analogue. Phys Chem Minerals 17:89–96

    Google Scholar 

  • Ingrin J, Liebermann RC (1989). Deviatoric stress in girdle-anvil apparatus: effect on the quartz-coesite phase transformation Phys Earth Planet Inter 54:378–385

    Google Scholar 

  • International Tables for X-ray Crystallography (1974) Vol. IV, Birmingham: Kynoch Press. (Present Distributor Reidel, Dordrecht)

  • Karato S, Li P (1992) Diffusion creep in perovskite: Implications for the rheology of the lower mantle. Science 255:1238–1240

    Google Scholar 

  • Kay HF, Bailey PC (1957) Structure and properties of CaTiO3. Acta Crystallogr 10:219–226

    Google Scholar 

  • Kudoh Y, Ito E, Takeda H (1987) Effect of pressure on the crystal structure of perovskite-type MgSiO3. Phys Chem Minerals 14:350–354

    Google Scholar 

  • Liu X, Wang Y, Liebermann RC (1988) Orthorhombic-tetragonal phase transition in CaGeO3 perovskite at high temperature. Geophys Res Lett 15:1231–1234

    Google Scholar 

  • Liu X, Wang Y, Liebermann RC, Maniar PD, Navrotsky A (1991) Phase transition in CaGeO3 perovskite: evidence from X-ray powder diffraction, thermal expansion and heat capacity. Phys Chem Minerals 18:224–230

    Google Scholar 

  • Megaw HD (1971) Crystal structures and thermal expansion. Mat Res Bull 6:1007–1018

    Google Scholar 

  • Naylor BF, Cook OA (1946) High temperature heat contents of metatitanates of calcium, iron and magnesium. J Am Chem Soc 68:1003–1005

    Google Scholar 

  • O'Keeffe M, Hyde BG, Bovin JO (1979) Contribution to the crystal chemistry of orthorhombic perovskites: MgSiO3 and NaMgF3. Phys Chem Minerals 299–305

  • Parise JB, Wang Y, Yeganeh-Haeri A, Cox DE, Fei Y (1990) Crystal structure and thermal expansion of (Mg, Fe)SiO3 perovskite. Geophys Res Lett 17:2089–2092

    Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Google Scholar 

  • Ross NL, Hazen RM (1989) Single crystal X-ray diffraction study of MgSiO3 perovskite from 77 to 400 K. Phys Chem Minerals 16:415–420

    Google Scholar 

  • Ross NL, Hazen RM, Mao H-K (1990) High-pressure crystal chemistry of MgSiO3 perovskite. Phys Chem Minerals 17:228–233

    Google Scholar 

  • Sasaki S, Prewitt CT, Liebermann RC (1983) The crystal structure of CaGeO3 perovskite and crystal chemistry of the GdFeO3-type perovskites. Am Mineral 68:1189–1198

    Google Scholar 

  • Sasaki S, Prewitt CT, Bass JD (1987) Orthorhombic perovskites CaTiO3 and CdTiO3: Crystal structure and space group. Acta Crystallogr 43:1668–1674

    Google Scholar 

  • Wang Y, Liebermann RC (1993) Electron miroscopy study of twinning due to structural phase transitions in natural CaTiO3 perovskite. Phys Chem Minerals 20:147–158

    Google Scholar 

  • Wang Y, Weidner DJ, Liebermann RC, Liu X, Ko J, Vaughan MT, Zhao Y, Yeganeh-Haeri A, Pacalo REG (1991) Phase transition and thermal expansion of MgSiO3 perovskite. Science 251:410–413

    Google Scholar 

  • Wiles DB, Young RA (1981) A new computer program for Reitvelt analysis of X-ray powder diffraction patterns. J Appl Crystallogr 14:149–151

    Google Scholar 

  • Wolf GH, Bukowinski MST (1987) Theoretical study of the structural properties and equations of state of MgSiO3 and CaSiO3 perovskites: implications for lower mantle composition. In: High-pressure research in mineral physics, Manghnani MH, Syono Y (eds), Terra Scientific, Tokyo, American Geophysical Union, Washington, D.C., pp 313–331

    Google Scholar 

  • Xiong DH, Ming LC, Manghnani MH (1986) High-pressure phase transformation and isothermal compression in CaTiO3 (perovskite). Phys Earth Planet Inter 43:244–252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

A National Science Foundation Science and Technology Center

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Liebermann, R.C. X-ray powder diffraction study of CaTiO3 perovskite at high temperatures. Phys Chem Minerals 20, 171–175 (1993). https://doi.org/10.1007/BF00200119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00200119

Keywords