Skip to main content
Log in

Action of FMRFamide on longitudinal muscle of the leech, Hirudo medicinalis

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

  1. 1.

    Nerve terminals associated with longitudinal muscle in the leech show FMRFamide-like immuno-reactivity.

  2. 2.

    Structure-activity studies using FMRFamide analogs show that the C-terminal RFamide portion of the molecule is crucial for biological activity on leech longitudinal muscle.

  3. 3.

    The putative protease inhibitor FA (Phe-Ala) increases the peak tension produced by longitudinal muscle in response to superfused FMRFamide and the majority of its analogs, suggesting the presence of peripheral proteases capable of degrading RFamide peptides.

  4. 4.

    FMRFamide decreases the relaxation rate of neurally evoked contractions of longitudinal muscle. FA also decreases the relaxation rate of neurally evoked contractions.

  5. 5.

    Intact and isolated muscle cells respond to superfused FMRFamide with a conductance increase, that leads to depolarization and often with a delayed conductance decrease as the membrane potential is restored to resting levels.

  6. 6.

    The depolarizing response of isolated muscle cells to FMRFamide is dependent on external calcium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal RA, Greenberg MJ (1969) A comparative study of cardioactive agents from bivalve tissue. Comp Biochem Physiol 31:835–850

    Google Scholar 

  • Austin R, Weiss S, Lukowiak K (1982) FMRFamide effects on spontaneous and induced contractions of the anterior gizzard in Aplysia. Can J Physiol Pharmacol 61:949–953

    Google Scholar 

  • Bacq ZM, Coppee B (1937) Action de l'eserine sur la préparation neuromusculaire du siponcle et de la sangsue. CR Soc Biol (Paris) 124:1244–1277

    Google Scholar 

  • Chou J, Tang J, Del Rio J, Yang H-YT, Costa E (1984) Action of peptidase inhibitors on methionine5-enkephalin-argine6-phenylalanine7 (YGGFMRF) and methionine5-enkephalin (YGGFM) metabolism and on electroacupuncture antinociception. J Pharmacol Exp Ther 230:349–352

    Google Scholar 

  • Cottrell GA, Greenberg MJ, Price DA (1983) Differential effects of the molluscan neuropeptide FMRFamide and the related met-enkephalin derivative YGGFMRFamide on the Helix tentacle retractor muscle. Comp Biochem Physiol 75C: 373–375

    Google Scholar 

  • Cowden C, Stretton AOW, Davis RE (1989) AF1, a sequenced bioactive neuropeptide from the nematode Ascaris suum. Neuron 2

  • Doble KE, Greenberg MJ (1982) The clam rectum is sensitive to FMRFamide, the enkephalins, and their common analogs. Neuropeptides 2:157–167

    Google Scholar 

  • Dockray GJ, Reeve JR, Shively J, Gayton RJ, Barnard CS (1983) A novel active pentapeptide from chicken brain identified by antibodies to FMRFamide. Nature 305:328–330

    Google Scholar 

  • Ebberink RHM, Price DA, van Loenhout H, Doble KE, Riehm JP, Geraerts WPM, Greenberg MJ (1987) The brain of Lymnaea contains a family of FMRFamide-like peptides. Peptides 8:515–522

    Google Scholar 

  • Evans BD, Calabrese RL (1989) Small cardioactive peptide-like immunoreactivity and its colocalization with FMRFamide-like immunoreactivity in the central nervous system of the leech, Hirudo medicinalis. Cell Tissue Res 257:187–199

    Google Scholar 

  • Evans PD, Meyers CM (1986) The modulatory actions of FMRFamide and related peptides on locust skeletal muscle. J Exp Biol 126:403–422

    Google Scholar 

  • Flacke W, Yeoh TS (1968) The action of some cholinergic agonists and anticholinesterase agents on the dorsal muscle of the leech. Br J Pharmacol Chemother 33:145–153

    Google Scholar 

  • Fuhner J (1918) Untersuchungen über den Synergismus von Giften. IV. Die chemische Erregbarkeitssteigerung glatter Muskulatur. Arch Exp Pathol Pharmakol 82:51–85

    Google Scholar 

  • Grimmelikhuijzen CJP, Graff D (1986) Isolation of pGlu-Gly-Arg-Phe-NH2 (Antho-RFamide), a neuropeptide from sea anemones. Proc Natl Acad Sci USA 83:9817–9821

    Google Scholar 

  • Higgins WJ, Price DA, Greenberg MJ (1978) FMRFamide increases the adenylate cyclase activity and cyclic AMP level of the molluscan heart. Eur J Pharmacol 48:425–430

    Google Scholar 

  • Holman GM, Cook BJ, Nachman RJ (1986) Isolation, primary structure and synthesis of leucomyosuppressin, an insect neuropeptide that inhibits spontaneous contractions of the cockroach hindgut. Comp Biochem Physiol 85C: 329–333

    Google Scholar 

  • Kramer RH, Zucker RS (1985) Calcium-dependent inward current in Aplysia bursting pacemaker neurons. J Physiol 362:107–130

    Google Scholar 

  • Kuffler DP (1978) Neuromuscular transmission in the longitudinal muscle of the leech, Hirudo medicinalis. J Comp Physiol 124:333–338

    Google Scholar 

  • Kuhlman JR, Li C, Calabrese RL (1985a) FMRFamide-like substances in the leech. I. Immunocytochemical localization. J Neurosci 5:2301–2309

    Google Scholar 

  • Kuhlman JR, Li C, Calabrese RL (1985b) FMRFamide-like substances in the leech. II. Bioactivity on the heartbeat systems. J Neurosci 5:2310–2317

    Google Scholar 

  • Lentzen H, Reinsch I, Linke J (1984) Angiotensin-converting enzyme, enkephalinase A and amino peptidases in the breakdown of enkephalin — studies in cell culture. Clin Exp Hypert A — Theory and Practice A6:1829–1832

    Google Scholar 

  • Li C, Calabrese RL (1985) Evidence for proctolin-like substances in the central nervous system of the leech Hirudo medicinalis. J Comp Neurol 232:414–424

    Google Scholar 

  • Li C, Calabrese RL (1987) FMRFamide-like substances in the leech. III. Biochemical characterization and physiological action. J Neurosci 7:595–603

    Google Scholar 

  • Maranto AR, Calabrese RL (1984b) Neural control of the hearts in the leech, Hirudo medicinalis. II. Myogenic activity and its control by heart motor neurons. J Comp Physiol A 154:381–391

    Google Scholar 

  • Marder E, Calabrese RL, Nusbaum MP, Trimmer BA (1987) Distribution and partial characterization of FMRFamide-like peptides in the stomatogastric nervous systems of the rock crab, Cancer borealis, and the spiny lobster, Panulirus interruptus. J Comp Neurol 259:150–163

    Google Scholar 

  • McKelvey JF, Blumberg S (1986) Inactivation and metabolism of peptides. Annu Rev Neurosci 9:415–434

    Google Scholar 

  • Muneoka Y, Matsumura M (1985) Effects of the molluscan neuropeptide FMRFamide and the related opioid peptide YGGFMRFamide on Mytilus muscle. Comp Biochem Physiol 81C:61–70

    Google Scholar 

  • Muneoka Y, Saitoh H (1986) Pharmacology of FMRFamide in Mytilus catch muscle. Comp Biochem Physiol 85C:207–214

    Google Scholar 

  • Norris BJ, Calabrese RL (1987) Identification of motor neurons that contain a FMRFamide-like peptide and the effects of FMRFamide on longitudinal muscle in the medicinal leech, Hirudo medicinalis. J Comp Neurol 266:95–111

    Google Scholar 

  • Ort CA, Kristan WB, Stent GS (1984) Neuronal control of swimming in the medicinal leech. II. Identification and connections of neurons. J Comp Physiol 94:121–156

    Google Scholar 

  • O'Donahue TL, Bishop JF, Chronwall BM, Groome J, Watson WH (1984) Characterization and distribution of FMRFamide immunoreactivity in the rat central nervous system. Peptides 5:563–568

    Google Scholar 

  • O'Shea M, Schaffer M (1985) Neuropeptide function: the invertebrate contribution. Annu Rev Neurosci 8:171–198

    Google Scholar 

  • Painter SD (1982a) FMRFamide catch contractures of a molluscan smooth muscle: pharmacology, ionic dependence and cyclic nucleotides. J Comp Physiol 148:491–501

    Google Scholar 

  • Painter SD (1982b) FMRFamide inhibition of a molluscan heart is accompanied by increases in cyclic AMP. Neuropeptides 3:19–27

    Google Scholar 

  • Painter SD, Price DA, Greenberg MJ (1974) Responses of bivalve myocardia to 5-hydroxytryptamine (5-HT) and the molluscan neuropeptide FMRFamide. Am Zool 19:959

    Google Scholar 

  • Painter SD, Greenberg MJ (1982) A survey of the responses of bivalve hearts to the molluscan neuropeptide FMRFamide and to 5-hydroxytryptamine. Biol Bull 162:311–332

    Google Scholar 

  • Painter SD, Morley JS, Price DA (1982) Structure-activity relations of the molluscan neuropeptide FMRFamide on some molluscan muscles. Life Sci 31:2471–2478

    Google Scholar 

  • Price DA (1982) The FMRFamide-like peptide of Helix aspersa. Comp Biochem Physiol 72C:325–328

    Google Scholar 

  • Price DA (1986) Evolution of a molluscan cardioexcitatory neuropeptide. Am Zool 26:1007–1015

    Google Scholar 

  • Price DA, Greenberg MJ (1977a) The structure of a molluscan cardioexcitatory neuropeptide. Science 197:670–671

    Google Scholar 

  • Price DA, Greenberg MJ (1977b) Purification and characterization of a cardioexcitatory neuropeptide from the central ganglia of a bivalve mollusc. Prep Biochem 7:261–281

    Google Scholar 

  • Price DA, Cottrell GA, Doble KE, Greenberg MJ, Jorenby W, Lehman HK, Riehm JP (1985) A novel FMRFamide-related peptide in Helix: pQDPFLRFamide. Biol Bull 169:256–266

    Google Scholar 

  • Price DA, Cobb CG, Doble KE, Kline JK, Greenberg MJ (1987) Evidence for a novel FMRFamide-related heptapeptide in the pulmonate snail Siphonaria pectinata. Peptides 8(3):533–538

    Google Scholar 

  • Raffa RB, Bianchi CP (1986) Further evidence for a neuromodulatory role of FMRFamide involving intracellular Ca++ pools in smooth muscle of Mytilus edulis. Comp Biochem Physiol 84C: 23–28

    Google Scholar 

  • Rocques BP, Fournie-Zaluski MC, Soroca E, Lecomte JM, Malfroy B, Llorens C, Schwartz JC (1980) The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice. Nature 288:286–288

    Google Scholar 

  • Sargent PB (1977) Synthesis of acetylcholine by excitatory motoneurons in central nervous system of the leech. J Neurophysiol 40:453–460

    Google Scholar 

  • Schaefer M, Picciotto MR, Kriener T, Kaldany RR, Taussig R, Scheller RH (1985) Aplysia neurons express a gene encoding multiple FMRFamide neuropeptides. Cell 41:457–467

    Google Scholar 

  • Schneider LE, Taghert PH (1988) Isolation and characterization of a Drosophila gene that encodes multiple neuropeptides related to Phe-Met-Arg-Phe-NH2 (FMRFamide). Proc Natl Acad Scin USA 85:1993–1997

    Google Scholar 

  • Schwartz JC, Malfroy B, De La Baume S (1981) Biological inactivation of enkephalins and the role of enkephalin-dipeptidylcarboxypeptidase (‘enkephalinase’) as a neuropeptidase. Life Sci 29:1715–1724

    Google Scholar 

  • Spencer AN, Grimmelikhuijzen CJP, Hahn M, Przysiezniak J (1987) RFamide neuropeptides in the hydromedusa Polyorchis penicillatus: localization, isolation and electrophysiology. Soc Neurosci Abstr 13:1256

    Google Scholar 

  • Standen NB (1981) Calcium channel inactivation by intracellular calcium injection into Helix neurons. Nature 293:158–159

    Google Scholar 

  • Trimmer BA, Kobierski LA, Kravitz E (1987) Purification and characterization of FMRFamide immunoreactive substances from the lobster nervous system: isolation and sequence analysis of two closely related peptides. J Comp Neurol 266:16–26

    Google Scholar 

  • Veenstra JA (1984) Immunocytochemical demonstration of a homology in peptidergic neurosecretory cells in the suboesophageal ganglion of a beetle and a locust with antisera to bovine pancreatic polypeptide, FMRFamide, vasopressin and a-MSH. Neurosci Lett 48:185–190

    Google Scholar 

  • Voigt KH, Kiehling C, Geis R, Falke N, Martin R (1983) Identification of met-enkephalin-Arg6-Phe7-amide: an opioid and cardioexcitatory peptide from the mollusc. Proc Int Narcotic Res Conf Garmisch, FRG 52L

  • Walker RJ, Woodruff GN, Kerkut GA (1970) The action of cholinergic antagonists on spontaneous excitatory potentials recorded from the body wall of the leech, Hirudo medicinalis. Comp Biochem Physiol 32:691–701

    Google Scholar 

  • Wallace BG (1981a) Distribution of AChE in cholinergic and non-cholinergic neurons. Brain Res 219:190–195

    Google Scholar 

  • Wallace BG (1981b) Neurotransmitter chemistry. In: Muller KJ, Nicholls JG, Stent GS (eds) Neurobiology of the leech. Cold Spring Harbor Laboratory, New York, pp 147–172

    Google Scholar 

  • Wallace BG, Gillon JW (1982) Characterization of acetylcholinesterase in individual neurons in the leech central nervous system. J Neurosci 2:1108–1118

    Google Scholar 

  • Walther C, Schiebe M, Voigt KH (1984) Synaptic and non-synaptic effects of molluscan cardioexcitatory neuropeptides on locust skeletal muscle. Neurosci Lett 45:99–104

    Google Scholar 

  • Weiss S, Goldberg JI, Cohan KS, Stell WK, Drummond GI, Lukowiak K (1984) Evidence from FMRFamide as a transmitter in the gill of Aplysia californica. J Neurosci 4:1994–2000

    Google Scholar 

  • Yang HYT, Fratta W, Majane EA, Costa E (1985) Isolation, sequencing, synthesis and pharmacological characterization of two brain neuropeptides that modulate the action of morphine. Proc Natl Acad Sci USA 82:7757–7761

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norris, B.J., Calabrese, R.L. Action of FMRFamide on longitudinal muscle of the leech, Hirudo medicinalis . J Comp Physiol A 167, 211–224 (1990). https://doi.org/10.1007/BF00188114

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00188114

Key words

Navigation