Skip to main content
Log in

Influence of protein dynamics on the metal-sites of ovotransferrin

  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Using the perturbed angular correlations (PAC) technique, the formation of hafnium-ovotransferrin complexes has been studied. Two binding configurations at each of the two specific binding-sites of the protein have been observed. They are characterized by well-defined electric quadrupole frequencies. Information about the dynamics of the protein was derived from temperature dependent measurements of the relaxation constant. The well-resolved spectra taken with fast BaF2-detectors allow a precise determination of the relaxation behaviour of the protein. The results are compared with the predictions from a hydrodynamic model for the reorientation of macromolecules. Thus the hydrodynamic volume of ovotransferrin and its N-terminal half-molecule were determined. The ovotransferrin volume is in agreement with a value derived for human serum transferrin from small angle neutron scattering. From experiments with immobilized protein material there is evidence for internal protein dynamics which is probed by the Hf-ion bound to the specific metal-sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PAC:

perturbed angular correlations technique

TF:

serum transferrin

LF:

lactoferrin

OTF:

ovotransferrin

OTF/2N:

N-terminal half-molecule of ovotransferrin

NQR:

nuclear quadrupole resonance

EFG:

electric field gradient

NQI:

nuclear quadrupole interaction

NTA:

nitrilotriacetate

MES:

2-(N-morpholino)ethanesulphonic acid

HEPPS:

N-2-hydroxyethyl-piperazine-N′-3-propanesulphonic acid

TRIS:

tris(hydroxymethyl)aminomethane

References

  • Abola J, Wood MK, Chweh A, Abraham D, Pulsinelli PD (1982) Structure of hen ovotransferrin at 5 Å resolution. In: Saltman P, Hegenauer J (eds) The biochemistry and physiology of iron. Elsevier Biomedical, New York, pp 27–32

    Google Scholar 

  • Aisen P, Harris DC (1989) Physical biochemistry of the transferrins. In: Loehr TM, Gray HB, Lever ABP (eds) Iron carriers and iron proteins. VCH, Weinheim, pp 239–371

    Google Scholar 

  • Anderson BF, Baker HM, Norris GE, Rice DE, Baker EN (1989) Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 Å resolution. J Mol Biol 209:711–734

    Google Scholar 

  • Anderson BF, Baker HM, Norris GE, Rumball SV, Baker EN (1990) Apolactoferrin structure demonstrates ligand-induced conformational changes in transferrins. Nature 344:784–787

    Google Scholar 

  • Appel H, Duffield J, Taylor DM, Then GM, Thies W-G (1987) 181Hf-labelled rat serum transferrin: Influence of temperature on the metal-binding configurations. Hyp Int 35:953–956

    Google Scholar 

  • Appel H, Neu-Müller M, Brown-Mason A, Schwab F, Taylor DM, Thies W-G (1990) Metal binding in ovotransferrin: should the two observed binding configurations be attributed to one molecular lobe each? Hyp Int 61:1223–1226

    Google Scholar 

  • Bailey S, Evans RW, Garrat RC, Gorinsky B, Hasnain S, Horsburgh C, Johti H, Lindley PF, Mydin A, Sarra R, Watson JL (1988) Molecular structure of serum transferrin at 3.3 Å resolution. Biochemistry 27:5804–5812

    Google Scholar 

  • Barfuß H, Böhnlein G, Hohenstein H, Kreische W, Niedrig H, Appel H, Heidinger R, Raudies J, Then GM, Thies W-G (1982) Temperature dependence of the electric field gradient in CdSe and HfO2O2. Z Phys B 47:99–102

    Google Scholar 

  • Baudry A, Boyer P, Vuillet P (1976) PAC study of molecular reorientation in liquids. Hyp Int 2:279–281

    Google Scholar 

  • Baudry A, Boyer P, Fabris JD, Vuillet P (1981) PAC study of molecular rotational motions in dilute solutions. Hyp Int 10:1057–1062

    Google Scholar 

  • Baudry A, Boyer P, Vuillet P (1983) High-resolution TDPAC experiments with fast BaF2 scintillators. Hyp Int 13:263–269

    Google Scholar 

  • Bauer R (1985) Perturbed angular correlation spectroscopy and its application to metal sites in proteins: possibilities and limitations. Q Rev Biophys 18:1–64

    Google Scholar 

  • Boyer P, Baudry A (1984) Perturbed angular correlation of gamma rays. In: Matsuura T (ed) Studies in physical and theoretical chemistry 31: hot atom chemistry. Elsevier, Amsterdam

    Google Scholar 

  • Brock J (1985) Transferrins. In: Harrison PM (ed) Topics in molecular and structural biology, VCH, Weinheim, 7:183–262

    Google Scholar 

  • Butz T, Lerf A (1983) Comment on ”Mößauer studies of the 6.2 γ-rays of 181Ta in Ta-dichalcogenides”. Phys Lett 97A:217–220

    Google Scholar 

  • Debye P (1945) Polar molecules, Chap. 5. Dover, New York

    Google Scholar 

  • van Eijk HG, van Noort WL (1976) Isolation of rat transferrin using CNBr-activated Sepharose 4B. J Clin Chem Clin Biochem 14:475–478

    Google Scholar 

  • Frauenfelder H, Petsko GA, Tsernoglou D (1979) Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature 280:558–563

    CAS  PubMed  Google Scholar 

  • Frauenfelder H, Steffen RM (1965) Angular correlations. In: Siegbahn K (ed) Alpha-, beta- and gamma-ray spectroscopy, vol. 2. North Holland, Amsterdam, pp 997–1198

    Google Scholar 

  • Gorinsky B, Horsburgh C, Lindley PF, Moss DS, Parker M, Watson JL (1979) Evidence for the bilobal nature of diferric rabbit plasma transferrin. Nature 281:157–158

    Google Scholar 

  • Heidinger R, Thies W-G, Appel H, Then GM (1987) High resolution 181Hf-TDPAC spectroscopy using fast BaF2 detectors. Hyp Int 35:1007–1010

    Google Scholar 

  • de Jong G, van Dijk JP, van Eijk HG (1990) The biology of transferrin. Clin Chim Acta 190:1–46

    Google Scholar 

  • Karplus M (1987) Molecular dynamics simulations of protein. Phys Today 40:68–72

    Google Scholar 

  • Marsden PJ, Smith FA, Evans RW (1989) Evidence of conformational changes in the non-equivalent binding sites of human serum transferrin. Appl Radiat Isol 40:715–722

    Google Scholar 

  • Marshall AG (1978) Biophysical chemistry: Principle techniques and applications. Wiley, New York, p 528

    Google Scholar 

  • Martel P, Kim SM, Powell BM (1980) Physical characteristics of human transferrin from small angle neutron scattering. Biophys J 31:371–380

    Google Scholar 

  • Metz-Boutigue M-H, Jolles J, Mazurier J, Schoentgen F, Legrand D, Spik G, Montreuil J, Jolles P (1984) Human lactoferrin: amino acid sequence and structural comparison with other transferrins. Eur J Biochem 145:659–676

    Google Scholar 

  • Oe H, Doi E, Hirose M (1988) Amino-terminal and carboxyl-terminal half-molecules of ovotransferrin: preparation by a novel procedure and their interactions. J Biochem 103:1066–1072

    Google Scholar 

  • Perrin F (1936) Mouvement brownien d'un éllipsoide (II). J Phys Radium 7:1–11

    Google Scholar 

  • Shinar J, Davidov D, Shaltiel D (1984) Proton NMR study of diffusion in continuous, nonstoichiometric metal-hydrogen systems. Phys Rev B 30: 6331–6363

    Google Scholar 

  • Smith FA, Lurie DJ, Brady F, Danpure HJ, Kensett FJ, Osman S, Silvester DJ, Waters SL (1984) PAC study of 111In binding to transferrin, tropolone and acetylacetone in aqueous solutions. Int J Appl Radiat Isot 35:501–506

    Google Scholar 

  • Tanford C (1961) Physical chemistry of macromolecules. Wiley, New York

    Google Scholar 

  • Taylor DM, Lehmann M, Planas-Bohne F, Seidel A (1983) The metabolism of radiohafnium in rats and hamsters: a possible analog of plutonium for metabolic studies. Radiat Res 95:339–358

    Google Scholar 

  • Taylor DM, Thies W-G, Appel H, Neu-Müller M, Schwab F, Weber HW (1988) Spectroscopic studies of hafnium-transferrin-complexes: differences between the two binding-sites. In: Hamer DH, Winge DR (eds) Metal ion homeostasis: molecular biology and chemistry, Vol. 98. New Series. Alan R Liss, New York, pp 179–188

    Google Scholar 

  • Then GM, Appel H, Raudies JH, Thies W-G, Duffield J, Taylor DM (1983) The binding of hafnium of nitrilotriacetate. Hyp Int 16:889–892

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: F. J. Schwab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwab, F.J., Appel, H., Neu, M. et al. Influence of protein dynamics on the metal-sites of ovotransferrin. Eur Biophys J 21, 147–154 (1992). https://doi.org/10.1007/BF00185429

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00185429

Key words

Navigation