Skip to main content
Log in

Sweeping-magnetic-twist mechanism for the acceleration of jets in the solar atmosphere

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A magnetodynamic mechanism for the acceleration of jets in the solar atmosphere (surges, Brueckner's EUV jets, and so on) is proposed, and a 2.5-dimensional MHD simulation is performed to show how this mechanism operates in the situation of the chromosphere-corona region of the solar atmosphere. It is seen from the result of simulation that together with the release of the magnetic twist, e.g., into a reconnected open flux tube, the mass in the high density twisted loop is driven out into the open flux tube due both to the pinch effect progressing with the packet of the magnetic twist into the open flux tube, and to the j × B force at the front of the packet of the unwinding twist in the off-axis part of the tube. The former, the progressing pinch, is accompanied by an accelerated hot blob, while the latter, the unwinding front of the magnetic twist, drives a cool cylindrical flow, both with velocities of the order of the local Alfvén velocity. One of the characteristic properties of the jet in our model is that the jet, consisting of hot core and cool sheath, has a helical velocity field in it, explaining the thus-far unexplained observed feature.

The sudden release of the magnetic twist into an open flux tube is most likely to be due to the reconnection between a twisted loop and the open flux tube. The mass is driven out in the relaxation process of the magnetic twist from the twisted loop to the open flux tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acton, L. W., Brown, W. A., Bruner, M. E. C., Haisch, B. M., and Strong, K. T.: 1983, Solar Phys. 86, 79.

    Google Scholar 

  • Banos, G. and Dara-Papamargariti, H.: 1983, Astron. Astrophys. 120, 181.

    Google Scholar 

  • Brueckner, G.: 1980, in A. Wayman (ed.), Highlights in Astronomy, Vol. 5, D. Reidel Publ. Co., Dordrecht, Holland, p. 557.

    Google Scholar 

  • Brueckner, G. and Bartoe, J. D.-F.: 1983, Astrophys. J. 272, 329.

    Google Scholar 

  • Bruzek, A.: 1974, in G. Newkirk (ed.), ‘Coronal Disturbances’, Proc. IAU Symp. 57, 323.

  • Dizer, M.: 1968, Solar Phys. 4, 99.

    Google Scholar 

  • Doschek, G. A., Feldman, U., and Mason, H. E.: 1979, Astron. Astrophys. 78, 342.

    Google Scholar 

  • Karpen, J. T., Oran, E. S., and Boris, J. P.: 1984, Astrophys. J. 287, 396.

    Google Scholar 

  • Kane, S. R., Kreplin, R. W., Martres, M.-J., Pick, M. and Soru-Escaut, I.: 1974, in G. Newkirk (ed.), ‘Coronal Disturbances’, Proc. IAU Symp. 57, 147.

  • Kubota, J.: 1984, private communication.

  • Kundu, M. R.: 1983, Solar Phys. 86, 205.

    Google Scholar 

  • Kurokawa, H., Hanaoka, Y., Shibata, K., Uchida, Y., and Nakajima, H.: 1986, in preparation.

  • Parker, E. N.: 1981, Cosmical Magnetic Fields, Clarendon Press, London, p. 167.

    Google Scholar 

  • Pick, M.: 1984, in J.-C. Pecker and Y. Uchida (eds.), Active Phenomena in the Atmospheres of the Sun and Stars, Institute d'Astrophysique, Paris, p. 217.

    Google Scholar 

  • Platov, Yu. V.: 1973, Solar Phys. 28, 477.

    Google Scholar 

  • Richtmyer, R. O. and Morton, K. W.: 1967, Difference Method for Initial Value Problem, 2nd ed., Interscience Publishers, New York.

    Google Scholar 

  • Roy, J.-R.: 1973, Ph.D. Thesis, University of Western Ontario.

  • Rubin, E. and Burstein, S. Z.: 1967, J. Comp. Phys. 2, 178.

    Google Scholar 

  • Rust, D. and Hildner, E.: 1980, in P. A. Sturrock (ed.), Solar Flares, Univ. Colorado Press, p. 273.

  • Rust, D. M. and Webb, D. F.: 1977, Solar Phys. 54, 403.

    Google Scholar 

  • Rust, D. M., Webb, D. F., and MacCombie, W.: 1977, Solar Phys. 54, 53.

    Google Scholar 

  • Shibata, K.: 1983, Publ. Astron. Soc. Japan 35, 263.

    Google Scholar 

  • Shibata, K. and Uchida, Y.: 1985a, Publ. Astron. Soc. Japan 37, 31.

    Google Scholar 

  • Shibata, K. and Uchida, Y.: 1985b, Publ. Astron. Soc. Japan (submitted).

  • Steinolfson, R. S., Wu, S. T., Dryer, M., and Tandberg-Hanssen, E.: 1978, Astrophys. J. 225, 259.

    Google Scholar 

  • Smith, E. van P.: 1968, Nobel Symp. No. 9, p. 137.

  • Tandberg-Hanssen, E., Martin, S. F., and Hansen, R. T.: 1980, Solar Phys. 65, 357.

    Google Scholar 

  • Tajima, T., Brunel, F., and Sakai, J.: 1982, Astrophys. J. 258, L45.

    Google Scholar 

  • Tamenaga, T., Kureikumi, T., and Kubota, J.: 1973, Publ. Astron. Soc. Japan 25, 447.

    Google Scholar 

  • Teske, R. G.: 1971, Solar Phys. 21, 146.

    Google Scholar 

  • Uchida, Y. and Shibata, K.: 1985a, in M. Kundu (ed.), Unstable Current Systems and Plasma Instabilities in Astrophysics, D. Reidel Publ. Co., Dordrecht, Holland, p. 287.

    Google Scholar 

  • Uchida, Y., and Shibata, K.: 1985b, in A. Underhill (ed.), The Origin of Non-Radiative Energy/Momentum in Hot Stars, NASA Printing Office, p. 169.

  • Uchida, Y. and Shibata, K.: 1985c, Publ. Astron. Soc. Japan 37, 515.

    Google Scholar 

  • Zirin, H. and Tanaka, K.: 1973, Solar Phys. 32, 173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibata, K., Uchida, Y. Sweeping-magnetic-twist mechanism for the acceleration of jets in the solar atmosphere. Sol Phys 103, 299–310 (1986). https://doi.org/10.1007/BF00147831

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00147831

Keywords

Navigation