Skip to main content
Log in

Embryogeny of gymnosperms: advances in synthetic seed technology of conifers

  • Review Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Synthetic seed technology requires the inexpensive production of large numbers of high-quality somatic embryos. Proliferating embryogenic cultures from conifers consist of immature embryos, which undergo synchronous maturation in the presence of abscisic acid and elevated osmoticum. Improvements in conifer somatic embryo quality have been achieved by identifying the conditions in vitro that resemble the conditions during in ovulo development of zygotic embryos. One normal aspect of zygotic embryo development for conifers is maturation drying, which allows seeds to be stored and promotes normal germination. Conditions of culture are described that yield mature conifer somatic embryos that possess normal storage proteins and fatty acids and which survive either partial drying, or full drying to moisture contents similar to those achieved by mature dehydrated zygotic embryos. Large numbers of quiescent somatic embryos can be produced throughout the year and stored for germination in the spring, which simplifies production and provides plants of uniform size. This review focuses on recent advances in conifer somatic embryogenesis and synthetic seed technology, particularly in areas of embryo development, maturation drying, encapsulation and germination. Comparisons of conifer embryogeny are made with other gymnosperms and angiosperms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

LEA:

late embryogenesis abundant

PEG:

polyethylene glycol

PGR:

plant growth regulator

RH:

relative humidity

TAG:

triacylglycerol

References

  • Afele JC, Senaratna T, McKersie BD & Saxena PK (1992) Somatic embryogenesis and plant regeneration from zygotic embryo culture in blue spruce (Picea pungens Engelman.) Plant Cell Rep. 11: 299–303

    Google Scholar 

  • Allona I, Casado R & Aragoncillo C (1992) Seed storage proteins from Pinus pinaster Ait.: homology of major components with 11S proteins from angiosperms. Plant Sci. 87: 9–18

    Google Scholar 

  • Ammirato PV (1983) Embryogenesis. In: Evans DA, Sharp WR, Ammirato PV & Yamada Y (Eds) Handbook of Plant Cell Culture, Vol 1 (pp 82–123). Macmillan, New York

    Google Scholar 

  • Anandarajah K & McKersie BD (1990a) Manipulating the desiccation tolerance and vigour of dry somatic embryos of Medicago sativa L. with sucrose, heat shock and abscisic acid. Plant Cell Rep. 9: 451–455

    Google Scholar 

  • Anandarajah K & McKersie BD (1990b) Enhanced vigour of dry somatic embryos of Medicago sativa L. with increased sucrose. Plant Sci. 71: 261–266

    Google Scholar 

  • Anandarajah K, Kott L, Beversdorf WD & McKersie BD (1991) Induction of desiccation tolerance in microsporederived embryos of Brassica napus L. by thermal stress. Plant Sci. 77: 119–123

    Google Scholar 

  • Attree SM, Bekkaoui F, Dunstan DI & Fowke LC (1987) Regeneration of protoplasts from an embryogenic suspension culture of white spruce (Picea glauca). Plant Cell Rep. 6: 480–483

    Google Scholar 

  • Attree SM, Dunstan DI & Fowke LC (1989a) Initiation of embryogenic callus and suspension cultures, and improved embryo regeneration from protoplasts of white spruce (Picea glauca). Can. J. Bot. 67: 1790–1795

    Google Scholar 

  • Attree SM, Dunstan DI & Fowke LC (1989b) Plantlet regeneration from embryogenic protoplasts of white spruce (Picea glauca). Bio/Technology 7: 1060–1062

    Google Scholar 

  • Attree SM, Budimir S & Fowke LC (1990a) Somatic embryogenesis and plantlet regeneration from cultured shoots and cotyledons of seedlings germinated from stored seed of black and white spruce (Picea mariana and Picea glauca). Can. J. Bot 68: 30–34

    Google Scholar 

  • Attree SM, Tautorus TE, Dunstan DI & Fowke LC (1990b) Somatic embryo maturation, germination, and soil establishment of plants of black and white spruce (Picea mariana and Picea glauca). Can. J. Bot. 68: 2583–2589

    Google Scholar 

  • Attree SM & Fowke LC (1991) Micropropagation through somatic embryogenesis in conifers. In: Bajaj YPS (Ed) High-tech and Micropropagation. Biotechnology in Agriculture and Forestry, Vol 17 (pp 53–70). Springer-Verlag, Berlin

    Google Scholar 

  • Attree SM, Dunstan DI & Fowke LC (1991a) White spruce [Picea glauca (Moench) Voss] and black spruce [Picea mariana (Mill) B.S.P.]. In: Bajaj YPS (Ed) Trees III. Biotechnology in Agriculture and Forestry, Vol 16 (pp 423–445). Springer-Verlag, Berlin

    Google Scholar 

  • Attree SM, Moore D, Sawhney VK & Fowke LC (1991b) Enhanced maturation and desiccation tolerance of white spruce (Picea glauca [Moench.] Voss) somatic embryos: Effects of a non-plasmolysing water stress and abscisic acid. Ann. Bot. 68:519–525

    Google Scholar 

  • Attree SM, Pomeroy MK & Fowke LC (1992) Manipulation of conditions for the culture of somatic embryos of white spruce for improved triacylglycerol biosynthesis and desiccation tolerance. Planta 187: 395–404

    Google Scholar 

  • Barratt DHP, Whitford PN, Cook SK, Butcher G & Wang TL (1989) Analysis of seed development in Pisum sativum L. VIII. Does abscisic acid prevent precocious germination and control storage protein synthesis? J. Exp. Bot. 40: 1009–1014

    Google Scholar 

  • Becwar MR, Noland TL & Wann SR (1987) A method for quantification of the level of somatic embryogenesis among Norway spruce callus lines. Plant Cell Rep. 6: 35–38

    Google Scholar 

  • Becwar MR, Noland TL & Wyckoff JL (1989) Maturation germination, and conversion of Norway spruce (Picea abies L.) somatic embryos to plants. In Vitro Cell. Dev. Biol. 25: 575–580

    Google Scholar 

  • Becwar MR, Nagmani R & Wann SR (1990) Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinus taeda). Can. J. For. Res. 20: 810–817

    Google Scholar 

  • Becwar MR, Blush TD, Brown DW & Chesick EE (1991) Multiple paternal genotypes in embryogenic tissue derived from individual immature loblolly pine seeds. Plant Cell Tiss. Org. Cult. 26: 37–44

    Google Scholar 

  • Bekkaoui F, Saxena PK, Attree SM, Fowke LC & Dunstan DI (1987) The isolation and culture of protoplasts from an embryogenic cell suspension culture of Picea glauca (Moench) Voss. Plant Cell Rep. 7: 481–484

    Google Scholar 

  • Bellarosa R, Mo LH & Arnold SV (1992) The influence of auxin and cytokinin on proliferation and morphology of somatic embryos of Picea abies (L.) Karst. Ann. Bot. 70: 199–206

    Google Scholar 

  • Bercetche J, Galerne M & Dereuddre J (1990) Augmentation des capacités de régénération de cals embryogènes de Picea abies (L.) Karst après congélation dans l'azote liquide. C.R. Acad. Sci. Paris Série III, 310: 357–363

    Google Scholar 

  • Berlyn GP, Kohls SJ & Anoruo AO (1991) Caribbean Pine (Pinus caribaea Morelet). In: Bajaj YPS (Ed) Trees III. biotechnology in Agriculture and Forestry, Vol 16 (pp 256–266). Springer-Verlag, Berlin

    Google Scholar 

  • Bewley DJ & Black M (1985) Seeds: Physiology of Development and Germination. Plenum Press, New York

    Google Scholar 

  • Borroto K & Dure LIII (1987) The globulin storage proteins of flowering plants are derived from two ancestral genes. Plant Mol. Biol. 8: 113–131

    Google Scholar 

  • Bostock RM & Quatrano RS (1992) Regulation of Em gene expression in rice. Plant Physiol. 98: 1356–1363

    Google Scholar 

  • Boulay MP, Gupta PK, Krogstrup P & Durzan DJ (1988) Development of somatic embryos from cell suspension cultures of Norway spruce (Picea abies Karst.). Plant Cell Rep. 7: 134–137

    Google Scholar 

  • Bourgkard F & Favre JM (1988) Somatic embryos from callus of Sequoia sempervirens. Plant Cell Rep. 7: 445–448

    Google Scholar 

  • Bozhkov PV, Lebedenko LA & Shiryaeva GA (1992) A pronounced synergistic effect of abscisic acid and 6-benzyladenine on Norway spruce (Picea abies L. Karst) somatic embryo maturation. Plant Cell Rep. 11: 386–389

    Google Scholar 

  • Brown C, Brooks FJ, Pearson D & Mathias RJ (1989) Control of embryogenesis and organogenesis in immature wheat embryo callus using increased medium osmolarity and abscisic acid. J. Plant. Physiol. 133: 727–733

    Google Scholar 

  • Buchholz JT (1931) The Pine embryo and the embryos of related genera. Ill. State Acad. Sci. Vol. 23: 117–125

    Google Scholar 

  • Buchholz JT (1939) The embryogeny of Sequoia sempervirens with a comparison of the sequoias. Amer. J. Bot. 26: 248–257

    Google Scholar 

  • Budimir S & Vujicic R (1992) Benzyladenine induction of buds and somatic embryogenesis in Picea omorica (Pancic) Purk. Plant Cell Tiss. Org. Cult. 31: 89–94

    Google Scholar 

  • Butler WM & Cumming AC (1993) Differential molecular responses to abscisic acid and osmotic stress in viviparous maize embryos. Planta 189: 47–54

    Google Scholar 

  • Cave MS, Arnott HJ & Cook SA (1961) Embryogeny in the California peonies with reference to their taxonomic position. Amer. J. Bot. 48: 397–404

    Google Scholar 

  • Chalupa V (1985) Somatic embryogenesis and plantlet regeneration from cultured immature and mature embryos of Picea abies (L.) Karst. Comm. Inst. For. 14: 57–63

    Google Scholar 

  • Chandler SF, Bateman C, Blomstedt C, Willyams D & Young R (1989) Forestry Biotechnology at Calgene Pacific. Aust. J. Biotechnol. 3: 281–284

    Google Scholar 

  • Chavez VM, Litz RE & Norstog K (1992a) Somatic embryogenesis from leaf callus of mature plants of the gymnosperm Ceratozamia mexicana var. Robustica (Miq.) Dyer (cycadales). In Vitro Cell. Dev. Biol. 28P: 59–63

    Google Scholar 

  • Chavez VM, Litz RE & Norstog K (1992b) In vitro morphogenesis of Ceratozamia hildae and C. mexicana from megagametophytes and zygotic embryos. Plant Cell Tiss. Org. Cult. 30: 93–98

    Google Scholar 

  • Chavez VM, Litz RE & Norstog K (1992c) Somatic embryogenesis and organogenesis in Zamia fischeri, Z. furfuracea and Z. pumila. Plant Cell Tiss. Org. Cult. 30: 99–105

    Google Scholar 

  • Cheliak WM & Klimaszewska K (1991) Genetic variation in somatic embryogenic response in open-pollinated families of black spruce. Theor. Appl. Genet. 82: 185–190

    Google Scholar 

  • Ching TM (1963) Fat utilization in germinating Douglas fir seed. Plant Physiol. 38: 722–728

    Google Scholar 

  • Ching TM (1966) Compositional changes of Douglas fir seed during germination. Plant Physiol. 41: 1313–1319

    Google Scholar 

  • Chowdhury CR (1962) The embryogeny of conifers: a review. Phytomorphology 12: 313–338

    Google Scholar 

  • Compton ME, Benton CM, Gray DJ & Songstad DD (1992) Plant recovery from maize somatic embryos subjected to controlled relative humidity dehydration. In Vitro Cell. Dev. Biol. 28P: 197–201

    Google Scholar 

  • Cornu D & Geoffrion C (1990) Aspects de l'embryogenèse somatique chez le mélèze. Euk. Soc. Bot. Fr. 137: 25–34

    Google Scholar 

  • Coulter JM & Chamberlain CJ (1910) Morphology of the Gymnosperms. University of Chicago Press, Chicago

    Google Scholar 

  • Crane PR & Upchurch GRJr (1987) Drewria potomacensis gen. et sp. nov., an early Cretaceous member of gnetales from the Potomac group of Virginia. Amer. J. Bot. 74: 1722–1736

    Google Scholar 

  • Cyr DR, Webster FB & Roberts DR (1991) Biochemical events during germination and early growth of somatic embryos and seed of interior spruce (Picea glauca engelmanii complex). Seed Sci. Res. 1: 91–97

    Google Scholar 

  • Denchev P, Velcheva M & Atanassov A (1991) A new approach to direct somatic embryogenesis in Medicago. Plant Cell Rep. 10: 338–341

    Google Scholar 

  • Dunstan DI (1988) Prospects and progress in conifer biotechnology. Can. J. For. Res. 18: 1497–1506

    Google Scholar 

  • Dunstan DI, Bekkaoui F, Pilon M, Fowke LC & Abrams SR (1988) Effects of ABA and analogues on the maturation of white spruce (Picea glauca) somatic embryos. Plant Sci. 58: 77–84

    Google Scholar 

  • Dunstan DI, Bethune TD & Abrams SR (1991) Racemic abscisic acid and abscisyl alcohol promote maturation of white spruce (Picea glauca) somatic embryos. Plant Sci. 76: 219–228

    Google Scholar 

  • Dunstan DI, Bock CA, Abrams GD & Abrams SR (1992) Metabolism of (+)- and (-)-abscisic acid by somatic embryo suspension cultures of white spruce. Phytochemistry 31: 1451–1454

    Google Scholar 

  • Durzan DJ & Gupta PK (1987) Somatic embryogenesis and polyembryogenesis in Douglas-fir cell suspension cultures. Plant Sci. 52: 229–235

    Google Scholar 

  • Eastman PAK, Webster FB, Pitel JA & Roberts DR (1991) Evaluation of somaclonal variation during somatic embryogenesis of interior spruce (Picea glauca engelmanii complex) using culture morphology and isozyme analysis. Plant Cell Rep. 10: 425–430

    Google Scholar 

  • Ellis DD, McCabe DE, McInnis S, Ramachandran R, Russell DR, Wallace KM, Martinell BJ, Roberts DR, Raffa KF & McCown BH (1993) Stable transformation of Picea glauca by particle acceleration. Bio/Technology 11: 84–89

    Google Scholar 

  • Engelmann F (1991) In vitro conservation of tropical plant germplasm-a review. Euphytica 57: 227–243

    Google Scholar 

  • Egertsdotter U & von Arnold S (1993) Classification of embryogenic cell lines of Picea abies as regards protoplast isolation and culture. J. Plant Physiol. 141: 222–229

    Google Scholar 

  • Feirer RP, Conkey JH & Verhagen SA (1989) Triglycerides in embryogenic conifer calli: a comparison with zygotic embryos. Plant Cell Rep. 8: 207–209

    Google Scholar 

  • Finer JJ, Kriebel HB & Becwar MR (1989) Initiation of embryogenic callus and suspension cultures of eastern white pine (Pinus strobus L.) Plant Cell Rep. 8: 203–206

    Google Scholar 

  • Finkelstein RR & Crouch ML (1986) Rapeseed embryo development in culture on high osmoticum is similar to that in seeds. Plant Physiol. 81: 907–912

    Google Scholar 

  • Flinn BS, Roberts DR, Webb DT & Sutton BCS (1991a) Storage protein changes during zygotic embryogenesis in interior spruce. Tree Physiol. 8: 71–81

    Google Scholar 

  • Flinn BS, Roberts DR & Taylor IEP (1991b) Evaluation of somatic embryos of interior spruce. Characterization and developmental regulation of storage proteins. Physiol. Plant. 82: 624–632

    Google Scholar 

  • Fourré J-L, André P, Casimiro F, Medjahdi G & Mestdagh M (1991) In vitro germination of encapsulated Picea abies (L.) karst. somatic embryos: preliminary results. Med. Fac. Landbouww. Rijksuniv. Gent. 56: 1449–1451

    Google Scholar 

  • Fowke LC, Attree SM, Wang H & Dunstan DI (1990) Microtubule organization and cell division in embryogenic protoplast cultures of white spruce (Picea glauca). Protoplasma 158: 86–94

    Google Scholar 

  • Friedman WE (1990) Double fertilization in Ephedra, a nonflowering seed plant: its bearing on the origin of angiosperms. Science 247: 951–954

    Google Scholar 

  • Galerne M & Dereuddre J (1987) Survie de cals embryogenèse d'épicéa après congélation a-196°C. AFOCEL 174: 7–31

    Google Scholar 

  • Galerne M, Bercetche J & Dereuddre J (1992) Cryoconservation of embryogencic callus of Norway spruce (Picea abies (L.) Karst)-influence of different factors on callus recovery and on embryo and plantlet production. Bull. Soc. Bot. France-Lett. Bot. 139: 331–334

    Google Scholar 

  • Gates JC & Greenwood MS (1991) The physical and chemical environment of the developing embryo of Pinus resinosa. Amer. J. Bot. 78: 1002–1009

    Google Scholar 

  • Gifford DJ (1988) An electrophoretic analysis of the seed proteins from Pinus monticola and eight other species of pine. Can. J. Bot. 66: 1808–1812

    Google Scholar 

  • Gifford DJ & Tolley MC (1989) The seed proteins of white spruce and their mobilization following germination. Physiol. Plant. 77: 254–261

    Google Scholar 

  • Gifford DJ, Dale PL & Wenzel KA (1991) Lodgepole pine seed germination. III. Patterns of protein and nucleic acid synthesis in the megagametophyte and embryo. Can. J. Bot. 69: 301–305

    Google Scholar 

  • Gifford EM & Foster AS (1989) Comparative morphology of vascular plants. 3rd edition. WH Freeman and Co. San Francisco

    Google Scholar 

  • Gray DJ, Conger BV & Songstad DD (1987) Desiccated quiescent somatic embryos of orchardgrass for use as synthetic seeds. In Vitro Cell. Dev. Biol 23: 29–33

    Google Scholar 

  • Gray DJ & Purohit A (1991a) Somatic embryogenesis and development of synthetic seed technology. Crit. Rev. Plant Sci. 10: 33–61

    Google Scholar 

  • Gray DJ & Purohit A (1991b) Quiescence and dormancy in somatic embryos. In Bajaj YPS (Ed) High-Tech and Micropropagation. Biotechnology in Agriculture and Forestry, Vol 17 (pp 382–394). Springer-Verlag, Berlin

    Google Scholar 

  • Green MJ, McLeod JK & Misra S (1991) Characterization of Douglas fir protein body composition by SDS-PAGE and electron microscopy. Plant Physiol. Biochem. 29: 49–55

    Google Scholar 

  • Groome MC, Axler RS & Gifford DJ (1991) Hydrolysis of lipid and protein reserves in loblolly pine seeds in relation to protein electrophoretic patterns following imbibition. Physiol. Plant. 83: 99–106

    Google Scholar 

  • Gupta PK & Durzan DJ (1986a) Plantlet regeneration via somatic embryogenesis from subcultured callus of mature embryos of Picea abies (Norway spruce). In Vitro Cell. Dev. Biol. 22: 685–688

    Google Scholar 

  • Gupta PK & Durzan DJ (1986b) Somatic polyembryogenesis from callus of mature sugar pine embryos. Bio/Technology 4: 643–645

    Google Scholar 

  • Gupta PK & Durzan DJ (1987a) Biotechnology of somatic polyembryogenesis and plantlet regeneration in loblolly pine. Bio/Technology 5: 147–151

    Google Scholar 

  • Gupta PK & Durzan DJ (1987b) Somatic embryos from protoplasts of loblolly pine proembryonal cells. Bio/Technology 5: 710–712

    Google Scholar 

  • Gupta PK, Durzan DJ & Finkle BJ (1987) Somatic polyembryogenesis in embryogenic cell masses of Picea abies (Norway spruce) and Pinus taeda (loblolly pine) after thawing from liquid nitrogen. Can. J. For. Res. 17: 1130–1134

    Google Scholar 

  • Gupta PK, Dandekar AM & Durzan DJ (1988) Somatic proembryo formation and transient expression of a luciferase gene in Douglas fir and loblolly pine protoplasts. Plant Sci. 58: 85–92

    Google Scholar 

  • Gupta PK & Pullman GS (1990) Method for reproducing coniferous plants by somatic embryogenesis. US Patent No. 4,957,866

  • Gupta PK & Pullman GS (1990) Method for reproducing coniferous plants by somatic embryogenesis using abscisic acid and osmotic potential variation. US Patent No. 5,036,007

  • Gupta PK, Timmis R, Pullman G, Yancey M, Kreitinger M, Carlson W & Carpenter C (1991) Development of an embryogenic system for automated propagation of forest trees. In: Vasil IK (Ed) Scale-up and Automation in Plant Propagation. Cell Culture and Somatic Cell Genetics of Plants, Vol 8 (pp 75–93). Academic Press, San Diego

    Google Scholar 

  • Gupta PK, Pullman G, Timmis R, Kreitinger M, Carlson WC, Grob J & Welty E (1993) Forestry in the 21st Century: The biotechnology of somatic embryogenesis. Bio/Technology 11: 454–459

    Google Scholar 

  • Haccius B (1978) Question of unicellular origin of nonzygotic embryos in callus cultures. Phytomorphology 28: 74–81

    Google Scholar 

  • Hadrys H, Balick M & Schierwater B (1992) Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol. Ecol. 1: 55–63

    Google Scholar 

  • Hakman I, Fowke LC, von Arnold S & Eriksson T (1985) The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway spruce). Plant Sci. 38: 53–59

    Google Scholar 

  • Hakman I & von Arnold S (1985) Plantlet regeneration through somatic embryogenesis in Picea abies (Norway spruce). J. Plant Physiol. 121: 149–158

    Google Scholar 

  • Hakman I & Fowke LC (1987) Somatic embryogenesis in Picea glauca (white spruce) and Picea mariana (black spruce). Can. J. Bot. 65: 656–659

    Google Scholar 

  • Hakman I & von Arnold S (1988) Somatic embryogenesis and plant regeneration from suspension cultures of Picea glauca (white spruce). Physiol. Plant. 72: 579–587

    Google Scholar 

  • Hakman I, Stabel P, Engstrom P & Eriksson T (1990) Storage protein accumulation during zygotic and somatic embryo development in Picea abies (Norway spruce). Physiol. Plant. 80: 441–445

    Google Scholar 

  • Hakman I (1993) Embryology in Norway spruce (Picea abies). An analysis of the composition of seed storage proteins and deposition of storage reserves during seed development and somatic embryogenesis. Physiol. Plant. 87: 148–159

    Google Scholar 

  • Hammatt N & Davey MR (1987) Somatic embryogenesis and plant regeneration from cultured zygotic embryos of soybean (Glycine max L. Merr.). J. Plant Physiol. 128: 219–226

    Google Scholar 

  • Harry IS & Thorpe TA (1991) Somatic embryogenesis and plant regeneration from mature zygotic embryos of red spruce. Bot. Gaz. 152: 446–452

    Google Scholar 

  • Hartmann S, Lang H & Reuther G (1992) Differentiation of somatic embryos from protoplasts isolated from embryogenic suspension cultures of Abies alba L. Plant Cell Rep. 11: 554–557

    Google Scholar 

  • Hetherington AM & Quatrano RS (1991) Mechanisms of action of abscisic acid at the cellular level. Tansley Review No. 31, New Phytol. 119: 9–32

    Google Scholar 

  • Hickey LJ & Doyle JA (1977) Early Cretaceous fossil evidence for angiosperm evolution. Bot. Rev. 43: 3–104

    Google Scholar 

  • Ishii K (1991) Somatic embryo formation and plantlet regeneration through embryogenic callus from mature zygotic embryos of Picea jezoensis var. hondoensis, Picea jezoensis, and Picea glehnii. J. Jpn. For. Soc. 73: 24–28

    Google Scholar 

  • Jain SM, Newton RJ & Soltes EJ (1988) Enhancement of somatic embryogenesis in Norway spruce (Picea abies L.). Theor. Appl. Genet. 76: 501–506

    Google Scholar 

  • Jain SM, Dong N & Newton RJ (1989) Somatic embryogenesis in slash pine (Pinus elliottii) from immature embryos cultured in vitro. Plant Sci. 65: 233–241

    Google Scholar 

  • Jalonen P & von Arnold S (1991) Characterization of embryogenic cell lines of Picea abies in relation to their competence for maturation. Plant Cell Rep. 10: 384–387

    Google Scholar 

  • Janick J, Kitto SL & Kim Y-H (1989) Production of synthetic seed by desiccation and encapsulation. In Vitro Cell. Dev. Biol. 25: 1167–1172

    Google Scholar 

  • Jensen U & Berthold H (1989) Legumin-like proteins in gymnosperms. Phytochemistry 28: 1389–1394

    Google Scholar 

  • Jensen U & Lixue C (1991) Abies seed protein profile divergent from other Pinaceae. Taxon 40: 435–440

    Google Scholar 

  • Joy RW, Kumar PP & Thorpe TA (1991a) Long term storage of somatic embryogenic white spruce tissue culture at ambient temperature. Plant Cell Tiss. Org. Cult. 25: 53–60

    Google Scholar 

  • Joy RW, Yeung EC, Kong L & Thorpe T (1991b) Development of white spruce somatic embryos: 1. Storage product deposition. In Vitro Cell. Dev. Biol. 27P: 32–41

    Google Scholar 

  • Kartha KK, Fowke LC, Leung NL, Caswell KL & Hakman I (1988) Induction of somatic embryos and plantlets from cryopreserved cell cultures of white spruce (Picea glauca). J. Plant Physiol. 132: 529–539

    Google Scholar 

  • Kermode AR & Bewley DJ (1985) The role of maturation drying in the transition from seed development to germination. J. Exp. Bot. 36: 1916–1927

    Google Scholar 

  • Kermode AR & Bewley DJ (1989) Developing seeds of Riccinus communis L., when detached and maintained in an atmosphere of high relative humidity, switch to a germinative mode without the requirement for complete desiccation. Plant Physiol. 90: 702–707

    Google Scholar 

  • Kermode AR (1990) Regulatory mechanisms involved in the transition from seed development to germination. CRC Crit. Rev. Plant Sci. 9: 155–195

    Google Scholar 

  • Kim Y-H & Janick J (1989) ABA and polyox-encapsulation or high humidity increases survival of desiccated somatic embryos of celery. HortScience 24: 674–676

    Google Scholar 

  • Kim Y-H & Janick J (1991) Abscisic acid and proline improve desiccation tolerance and increase fatty acid content of celery somatic embryos. Plant Cell Tiss. Org. Cult. 24: 83–89

    Google Scholar 

  • Kitto SL & Janick J (1985) Production of synthetic seeds by encapsulating asexual embryos of carrot. J. Amer. Soc. Hort. Sci. 110: 277–282

    Google Scholar 

  • Klimaszewska K (1989a) Plantlet development from immature zygotic embryos of hybrid larch through somatic embryogenesis. Plant Sci. 63: 95–103

    Google Scholar 

  • Klimaszewska K (1989b) Recovery of somatic embryos and plantlets from protoplast cultures of Larix x eurolepis. Plant Cell Rep. 8: 440–444

    Google Scholar 

  • Klimaszewska K, Ward C & Cheliak WM (1992) Cryopreservation and plant regeneration from embryogenic cultures of larch (Larix x eurolepis) and black spruce (Picea mariana) J. Exp. Bot. 43: 73–79

    Google Scholar 

  • Konar RN (1958) A quantitative survey of some nitrogenous substances and fats in the developing embryos and gametophytes of Pinus roxburghii Sar. Phytomorphology 8: 174–176

    Google Scholar 

  • Kong L & Yeung EC (1992) Development of white spruce somatic embryos: II Continual shoot meristem development during germination. In Vitro Cell. Dev. Biol. 28P: 125–131

    Google Scholar 

  • Krogstrup P (1986) Embryo like structures from cotyledons and ripe embryos of Norway spruce (Picea abies). Can. J. For. Res. 16: 664–668

    Google Scholar 

  • Krogstrup P, Eriksen EN, Møller JD & Roulund H (1988) Somatic embryogenesis in sitka spruce (Picea sitchensis (Bong.) Carr.). Plant Cell Rep. 7: 594–597

    Google Scholar 

  • Krogstrup P (1990) Effect of culture densities on cell proliferation and regeneration from embryogenic cell suspensions of Picea sitchensis. Plant Sci. 72: 115–123

    Google Scholar 

  • Kumar PP, Joy RWIV & Thorpe TA (1989) Ethylene and carbon dioxide accumulation, and growth of cell suspension cultures of Picea glauca (white spruce). J. Plant. Physiol. 135: 592–596

    Google Scholar 

  • Kvaalen H & von Arnold S (1991) Effects of various partial pressures of oxygen and carbon dioxide on different stages of somatic embryogenesis in Picea abies. Plant Cell Tiss. Org. Cult. 27: 49–57

    Google Scholar 

  • LaRue CD (1948) Regeneration in the megagametophyte of Zamia floridana. Bull. Torrey Bot. Club 75: 597–603

    Google Scholar 

  • LaRue CD (1954) Studies on the growth and regeneration in gametophytes and sporophytes of gymnosperms. Brookhaven Natl. Lab. Symp. 6: 187–208

    Google Scholar 

  • Lainé E & David A (1990) Somatic embryogenesis in immature embryos and protoplasts of Pinus caribaea. Plant Sci. 69: 215–224

    Google Scholar 

  • Lainé E, Bade P & David A (1992) Recovery of plants from cryopreserved embryogenic cell suspensions of Pinus caribaea. Plant Cell Rep. 11: 295–298

    Google Scholar 

  • Lang H & Kohlenbach HW (1989) Cell differentiation in protoplast cultures from embryogenic callus of Abies alba L. Plant Cell Rep. 8: 120–123

    Google Scholar 

  • Leal I & Misra S (1993a) Developmental gene expression in conifer embryogenesis and germination. III. Analysis of crystalloid protein mRNAs and desiccation protein mRNAs in the developing embryo and megagametophyte of white spruce (Picea glauca (Moench) Voss). Plant Sci. 88: 25–37

    Google Scholar 

  • Leal I & Misra S (1993b) Molecular cloning and characterization of a legumin-like storage protein cDNA of Douglas fir seeds. Plant Mol. Biol. 21: 709–715

    Google Scholar 

  • Lelu M-A, Boulay M & Arnaud Y (1987) Obtention de cals embryogénes à partir de cotylédons de Picea abies (L.) Karst. prélevés sur de jeunes plantes âgées de 3 à 7 jours après germination. C. R. Acad. Sci. Paris 305: 105–109

    Google Scholar 

  • Lelu M-AP, Boulay MP & Bornman CH (1990) Somatic embryogenesis in cotyledons of Picea abies is enhanced by an adventitious bud-inducing treatment. New Forests 4: 125–135

    Google Scholar 

  • Lelu M-AP & Bornman CH (1990) Induction of somatic embryogenesis in excised cotyledons of Picea glauca and Picea mariana. Plant Physiol. Biochem. 28: 785–791

    Google Scholar 

  • Livingston NJ, von Aderkas P, Fuchs EE & Reaney MJT (1992) Water relation parameters of embryogenic cultures and seedlings of larch. Plant Physiol. 100: 1304–1309

    Google Scholar 

  • Lu C-Y & Thorpe TA (1987) Somatic embryogenesis and plantlet regeneration in cultured immature embryos of Picea glauca. J. Plant Physiol. 128: 297–302

    Google Scholar 

  • Lulsdorf MM, Tautorus TT, Kikcio SI & Dunstan DI (1992) Growth parameters of embryogenic suspension cultures of interior spruce (Picea glauca-engelmanii complex) and black spruce (Picea mariana Mill.). Plant Sci. 82: 227–234

    Google Scholar 

  • Lulsdorf MM, Tautorus TT, Kikcio SI, Bethune TD & Dunstan DI (1993) Germination of encapsulated embryos of interior spruce (Picea glauca engelmanii complex) and black spruce (Picea mariana Mill.). Plant Cell Rep. (in press)

  • Mapes G, Rothwell GW & Haworth MT (1989) Evolution of seed dormancy. Nature 337: 645–646

    Google Scholar 

  • Martin W, Gierl A & Saedler H (1989) Molecular evidence for pre-Cretaceous angiosperm origins. Nature 339: 46–48

    Google Scholar 

  • McKersie BD, Senaratna T, Bowley SR, Brown DCW, Krochko JE & Bewley JD (1989) Application of artificial seed technology in the production of Hybrid alfalfa (Medicago sativa L.). In Vitro Cell. Dev Biol. 25: 1183–1188

    Google Scholar 

  • Meinke DW (1991) Perspectives on genetic analysis of plant embryogenesis. The Plant Cell 3: 857–866

    Google Scholar 

  • Mexal J, Fisher JT, Osteryoung J & Reid CPP (1975) Oxygen availability in polyethylene glycol solutions and its implications in plant-water relations. Plant Physiol. 55: 20–24

    Google Scholar 

  • Millar CN & Brown JT (1973) Palaeozoic seeds with embryos. Science 179: 184–185

    Google Scholar 

  • Msra S, Kermode A & Bewley DJ (1985) Maturation drying as the ‘switch’ that terminates seed development and promotes germination. In: van Vloten-Doting L, Groot GSP & Hall T C (Eds) Molecular Form and Function of the Plant Genome, Nato ASI series (pp 113–128). Plenum Press, New York

    Google Scholar 

  • Misra S & Green MJ (1990) Developmental gene expression in conifer embryogenesis and germination. I. Seed proteins and protein composition of mature embryo and the megagametophyte of white spruce (Picea glauca [Moench] Voss.). Plant Sci. 68: 163–173

    Google Scholar 

  • Misra S & Green MJ (1991) Developmental gene expression in conifer embryogenesis and germination. II. Crystalloid protein synthesis in the developing embryo and megagametophyte of white spruce (Picea glauca [Moench] Voss.). Plant Sci. 78: 61–71

    Google Scholar 

  • Misra S, Attree SM, Leal I & Fowke LC (1993) Effect of abscisic acid, osmoticum, and desiccation on synthesis of storage proteins during the development of white spruce somatic embryos. Ann. Bot. 71: 11–22

    Google Scholar 

  • Mo LH, von Arnold S & Lagercrantz U (1989) Morphogenic and genetic stability in longterm embryogenic cultures and somatic embryos of Norway spruce (Picea abies {L.} Karst). Plant Cell Rep. 8: 375–378

    Google Scholar 

  • Mo LH & von Arnold S (1991) Origin and development of embryogenic cultures from seedlings of Norway spruce (Picea abies). J. Plant. Physiol. 138: 223–230

    Google Scholar 

  • Mullin TJ & Park YS (1992) Estimating genetic gains from alternative breeding strategies for clonal forestry. Can. J. For. Res. 22: 14–23

    Google Scholar 

  • Nagmani R & Bonga JM (1985) Embryogenesis in subcultured callus of Larix decidua. Can. J. For. Res. 15: 1088–1091

    Google Scholar 

  • Nagmani R, Becwar MR & Wann SR (1987) Single-cell orgin and development of somatic embryos in Picea abies (L.) Karst. (Norway spruce) and Picea glauca (Moench) Voss (white spruce). Plant Cell Rep. 6: 157–159

    Google Scholar 

  • Newton CH, Flinn BS & Sutton BCS (1992) Vicilin-like seed storage proteins in the gymnosperm interior spruce (Picea glauca/engelmanii). Plant Mol. Biol. 20: 315–322

    Google Scholar 

  • Nørgaard JV & Krogstrup P (1991) Cytokinin induced somatic embryogenesis from immature embryos of Abies nordmandiana Lk. Plant Cell Rep. 9: 509–513

    Google Scholar 

  • Norstog K (1965) Induction of apogamy in megagametophytes of Zamia integrifolia. Amer. J. Bot. 52: 993–999

    Google Scholar 

  • Norstog K & Rhamstine E (1967) Isolation and culture of haploid and diploid cycad tissues. Phytomorphology 17: 374–381

    Google Scholar 

  • Park YS, Pond SE & Bonga JM (1993) Initiation of somatic embryogenesis in white spruce (Picea glauca); genetic control, culture treatment effects, and implications for tree breeding. Theor. Appl. Genet. (in press)

  • Parrott WA, Dryden G, Vogt S, Hilderbrand DF, Collins GB & Williams EG (1988) Optimization of somatic embryogenesis and embryo germination in soybean. In Vitro Cell. Dev. Biol. 24: 817–820

    Google Scholar 

  • Pullman GS & Gupta PK (1991) Method for reproducing coniferous plants by somatic embryogenesis using adsorbent materials in the development stage media. US Patent No. 5,034,326

  • Redenbaugh K, Viss P, Slade D & Fujii JA (1987) Scale-up: artificial seeds. In: Green CE, Somers DA, Hacket WP & Biesboer DD (Eds) Plant Tissue and Cell Culture (pp 473–493). Alan R Liss Inc, New York

    Google Scholar 

  • Redenbaugh K, Fujii JO & Slade D (1991) Synthetic seed technology. In: Vasil IK (Ed) Cell Culture and Somatic Cell Genetics of Plants, Vol 8 (pp 35–74). Academic Press, San Diego

    Google Scholar 

  • Redenbaugh K (1993) Synseeds: Applications of Synthetic Seed Technology. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Roberts DR, Flinn BS, Webb DT, Webster FB & Sutton BCS (1990a) Abscisic acid and indole-3-butyric acid regulation of maturation and accumulation of storage proteins in somatic embryos of interior spruce. Physiol. Plant. 78: 355–360

    Google Scholar 

  • Roberts DR, Sutton BCS & Flinn BS (1990b) Synchronous and high frequency germination of interior spruce somatic embryos following partial drying at high relative humidity. Can. J. Bot. 68: 1086–1090

    Google Scholar 

  • Roberts DR (1991) Abscisic acid and mannitol promote early development, maturation and storage protein accumulation in somatic embryos of interior spruce. Physiol. Plant. 83: 247–254

    Google Scholar 

  • Roberts DR, Lazaroff WR & Webster FB (1991) Interaction between maturation and high relative humidity treatments and their effects on germination of sitka spruce somatic embryos. J. Plant Physiol. 138: 1–6

    Google Scholar 

  • Robertson D, Weissinger AK, Ackley R, Glover S & Sederoff RR (1992) Genetic transformation of Norway spruce (Picea abies (L.) Karst) using somatic embryo explants by microprojectile bombardment. Plant Mol. Biol. 19: 925–935

    Google Scholar 

  • Ruaud J-N, Bercetche J & Paques M (1992) First evidence of somatic embryogenesis from needles of 1-year-old Picea abies plants. Plant Cell Rep. 11: 563–566

    Google Scholar 

  • Salajova T & Salaj J (1992) Somatic embryogenesis in European black pine (Pinus nigra Arn.) Biol. Plant. 34: 213–218

    Google Scholar 

  • Schuller A, Reuther G & Geier T (1989) Somatic embryogenesis from seed explants of Abies alba. Plant Cell Tiss. Org. Cult. 17: 53–58

    Google Scholar 

  • Schuller A & Reuther G (1993) Response of Abies alba embryonal suspensor mass to various carbohydrate treatments. Plant Cell Rep 12: 199–202

    Google Scholar 

  • Senaratna T, McKersie BD & Bowley SR (1989) Desiccation tolerance of alfalfa (Medicago sativa L.) somatic embryos. Influence of abscisic acid, stress pretreatments and drying rates. Plant Sci. 65: 253–259

    Google Scholar 

  • Senaratna T, Kott L, Beversdorf WD & McKersie BD (1991) Desiccation of microspore derived embryos of oilseed rape (Brassica napus L.). Plant Cell Rep. 10: 342–344

    Google Scholar 

  • Singh H (1978) Embryology of Gymnosperms. Handbuch der Pflanzenanatomie, Band X, Teil 2. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Skriver K & Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress. The Plant Cell 2: 503–512

    Google Scholar 

  • Stebbins GL (1974) Flowering plants: Evolution above the Species Level. Belknap Press of the Harvard University Press, Cambridge, MA

    Google Scholar 

  • Steeves TA (1983) The evolution and biological significance of seeds. Can. J. Bot. 61: 3550–3560

    Google Scholar 

  • Stewart WN (1983) Palaeobotany and the Evolution of Plants. Cambridge University Press, Cambridge

    Google Scholar 

  • Stockey RA (1978) Reproductive biology of Cerro Cuadrado fossil conifers: ontogeny and reproductive strategies in Araucaria mirabilis (spegazzini) windhausen. Palaeontographica 166: 1–15

    Google Scholar 

  • Stockey RA (1982) The Araucariaceae: an evolutionary perspective. Rev. Palaebot. Palynol. 37: 133–154

    Google Scholar 

  • Tautorus TE, Attree SM, Fowke LC & Dunstan DI (1990) Somatic embryogenesis from immature and mature zygotic embryos, and embryo regeneration from protoplasts in black spruce (Picea mariana Mill.). Plant Sci. 67: 115–124

    Google Scholar 

  • Tautorus TE, Fowke LC & Dunstan DI (1991) Somatic embryogenesis in conifers. Can. J. Bot. 69: 1873–1899

    Google Scholar 

  • Tautorus TE, Lulsdorf MM, Kikcio SI & Dunstan DI (1992) Bioreactor culture of Picea mariana Mill. (black spruce) and the species complex (Picea glauca-engelmanii) (interior spruce) somatic embryos. Growth parameters. App. Microbiol. Biotechnol. 38: 46–51

    Google Scholar 

  • Taylor TN & Taylor EL (1993) The Biology and Evolution of Fossil Plants. Prentice Hall Inc., New Jersey

    Google Scholar 

  • Thomann EB, Sollinger J, White C & Rivin CJ (1992) Accumulation of group 3 late embryogenesis abundant proteins in Zea mays embryos. Plant Physiol. 99: 607–614

    Google Scholar 

  • Templeman T & DeMaggio AE (1990) Biochemistry of fern spore proteins: globulin storage proteins and Onoclea sensibilis and Osmunda cinnamomea. Amer. J. Bot. 77: 284–287

    Google Scholar 

  • Thompson RG & von Aderkas P (1992) Somatic embryogenesis and plant regeneration from immature embryos of western larch. Plant Cell Rep. 11: 379–385

    Google Scholar 

  • Tremblay FM (1990) Somatic embryogenesis and plantlet regeneration from embryos isolated from stored seeds of Picea glauca. Can. J. Bot. 68: 236–242

    Google Scholar 

  • Tremblay L & Tremblay FM (1991a) Effects of gelling agents, ammonium nitrate, and light on the development of Picea mariana (Mill) B.S.P. (black spruce) and Picea rubens Sarg. (red spruce) somatic embryos. Plant Sci. 77: 233–242

    Google Scholar 

  • Tremblay L & Tremblay FM (1991b) Carbohydrate requirements for the development of black spruce (Picea mariana (Mill.) B.S.P.) and red spruce (P. rubens Sarg.) somatic embryos. Plant Cell Tiss. Org. Cult. 27: 95–103

    Google Scholar 

  • Verhagen SA & Wann SR (1989) Norway spruce somatic embryogenesis: high frequency initiation from light-cultured mature embryos. Plant Cell Tiss. Org. Cult. 16: 103–111

    Google Scholar 

  • von Aderkas P, Bonga JM & Nagmani R (1987) Promotion of embryogenesis in cultured megagametophytes of Larix decidua. Can. J. For. Res. 17: 1293–1296

    Google Scholar 

  • von Aderkas P & Bonga JM (1988) Formation of haploid embryoids of Larix decidua: early embryogenesis. Amer. J. Bot. 75: 690–700

    Google Scholar 

  • von Aderkas P, Klimaszewska K & Bonga JM (1990) Diploid and haploid embryogenesis in Larix leptolepis, L. decidua, and their reciprocal hybrids. Can. J. For. Res. 20: 9–14

    Google Scholar 

  • von Aderkas P (1992) Embryogenesis from protoplasts of haploid European larch. Can. J. For. Res. 22: 397–402

    Google Scholar 

  • von Arnold S & Hakman I (1986) Effects of sucrose on initiation of embryogenic callus from mature zygotic embryos of Picea abies (L.) Karst. (Norway spruce). J. Plant Physiol. 122: 251–265

    Google Scholar 

  • von Arnold S (1987) Improved efficiency of somatic embryogenesis in mature embryos of Picea abies (L.). Karst. J. Plant Physiol. 128: 233–234

    Google Scholar 

  • von Arnold S & Hakman I (1988) Regulation of somatic embryo development in Picea abies by abscisic acid (ABA). J. Plant Physiol. 132: 164–169

    Google Scholar 

  • von Arnold S & Woodward S (1988) organogenesis and embryogenesis in mature zygotic embryos of Picea sitchensis. Tree Physiology 4: 291–300

    Google Scholar 

  • Wann SR, Johnson MA, Noland TL & Carlson JA (1987) Biochemical differences between embryogenic and non-embryogenic callus of Picea abies (L.). Karst. Plant Cell Rep. 6: 39–42

    Google Scholar 

  • Webb DT & Osborne R (1989) Cycads. In: Bajaj YPS (Ed) Trees II. Biotechnology in Agriculture and Forestry, Vol 5 (pp 591–613) Springer-Verlag, Berlin

    Google Scholar 

  • Webb DT, Webster F, Flinn BS, Roberts DR & Ellis DD (1989) Factors influencing the induction of embryogenic and caulogenic callus from embryos of Picea glauca and P. engelmanii. Can. J. For. Res. 19: 1303–1308

    Google Scholar 

  • Webster FB, Roberts DR, McInnis SM & Sutton BCS (1990) Propagation of interior spruce by somatic embryogenesis. Can. J. For. Res. 20: 1759–1765

    Google Scholar 

  • Westcott RJ (1992) Embryogenesis from non-juvenile Norway spruce (Picea abies). In Vitro Cell. Dev. Biol. 28A: 101A

  • Whitmore FW (1991) Stored messenger RNA and stratification in eastern white pine (Pinus strobus L.). Seed Sci. Technol. 19: 341–346

    Google Scholar 

  • Xu N & Bewley JD (1992) Contrasting pattern of somatic and zygotic embryo development in alfalfa (Medicago sativa L.) as revealed by scanning electron microscopy. Plant Cell Rep. 11: 279–284

    Google Scholar 

  • Xu N, Coulter KM & Bewley DJ (1990) Abscisic acid and osmoticum prevent germination of developing alfalfa embryos, but only osmoticum maintains the synthesis of developmental proteins. Planta 182: 382–390

    Google Scholar 

  • Yakovlev MS & Yoffe MD (1957) On some peculiar features in the embryogeny of Paeonia L. Phytomorphology 7: 74–82

    Google Scholar 

  • Zeevart JAD & Creelman RA (1988) Metabolism and physiology of abscisic acid. Ann. Rev. Plant Physiol. Plant Mol. Biol. 39: 439–473

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attree, S.M., Fowke, L.C. Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tiss Organ Cult 35, 1–35 (1993). https://doi.org/10.1007/BF00043936

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00043936

Key words

Navigation